
WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science
Department of Computer Science and Engineering

Dissertation Examination Committee:
Christopher Gill, Chair

Kunal Agrawal
Roger Chamberlain

Ron Cytron
Dave Peters

Gruia-Catalin Roman

A Transactional Model and Platform for Designing and Implementing Reactive Systems

by

Justin Wilson

A dissertation presented to
The Graduate School

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

December 2016
Saint Louis, Missouri

i

copyright by

Justin Wilson

2016

Contents

List of Tables . iv

List of Figures . v

Acknowledgments . vii

Abstract . viii

1 Introduction . 1
1.1 Reactive Programs and Systems . 1
1.2 Trends . 3
1.3 Limitations of the State of the Art . 4
1.4 Challenges . 6
1.5 Approach and Contributions . 9

2 Background and Related Work . 11

3 Reactive Component Model . 19
3.1 Features of the Model . 20

3.1.1 State Variables . 23
3.1.2 Atomic State Transitions . 23
3.1.3 Actions, Reactions, Push Ports, Bindings, and Composition 24
3.1.4 Transactions . 25
3.1.5 Execution . 26

3.2 Example: Clock System . 27
3.3 Properties of Composition . 29

3.3.1 Substitutional Equivalence . 31
3.3.2 Determinism and Composition . 32
3.3.3 Decomposition, Getters, and Pull Ports 33

3.4 Summary . 37

4 The rcgo Programming Language . 39
4.1 Challenges . 39
4.2 Constraints . 40
4.3 Approach . 42

ii

4.4 Preliminaries . 43
4.5 Syntax and Semantics . 47
4.6 Examples . 59

4.6.1 Shared Variable System . 59
4.6.2 Heap Channel System . 70

4.7 Related Work . 73
4.8 Summary . 74

5 Implementation . 75
5.1 Interpreter Organization and Implementation 75
5.2 Enforcing Sound Composition . 76
5.3 Activations . 82
5.4 Heaps . 88
5.5 I/O . 92
5.6 Summary . 95

6 Transaction Scheduling . 97
6.1 The Transaction Scheduling Problem . 97
6.2 Scheduler Design Criteria . 102
6.3 Scheduler Design . 103
6.4 Scheduler Implementations . 107
6.5 Scheduler Evaluation . 109
6.6 Summary . 141

7 Conclusions and Future Work . 143
7.1 Conclusions . 146
7.2 Future Work . 148

7.2.1 Dynamic Systems . 148
7.2.2 Scheduling . 150

7.3 Broader Impacts . 153

Appendix A Partition Tables . 154

References . 158

Vita . 165

iii

List of Tables

4.1 Indirection mutability compatibility for assignment 50

6.1 Experimental environment used for scheduler testing 113

A.1 Partitions for the AsyncClock system . 156
A.2 Partitions for the SyncClock system . 157

iv

List of Figures

3.1 Features of a reactive component . 20
3.2 Diagram of a web application built using reactive components 22
3.3 Definition of the Clock component of the Clock System 28
3.4 Definition of the Client of the Clock System 28
3.5 Definition of the System component of the Clock System 29
3.6 Transaction diagram for the client.Request action of the Clock System . . 29
3.7 Transaction diagram for the clock.Clock action of the Clock System 30
3.8 Substitution of sub-components for the Clock System 30
3.9 Simplification of expanded System component of the Clock System 31
3.10 Transaction diagram for a non-deterministic transaction 32
3.11 Definition of the Counter component of the Factored Clock System 35
3.12 Definition of the Clock component of the Factored Clock System 35
3.13 Definition of the RequestResponse component of the Factored Clock System 36
3.14 Definition of the Clock component of the Factored Clock System (fully-factored) 36

4.1 Memory model for the rcgo run-time system 45
4.2 Code listing for Variable component of the Shared Variable System 60
4.3 Code listing for Process component of the Shared Variable System (part 1) 62
4.4 Code listing for Process component of the Shared Variable System (part 2) 63
4.5 Code listing for User component of the Shared Variable System (part 1) . . 66
4.6 Code listing for User component of the Shared Variable System (part 2) . . 67
4.7 Code listing for System component of the Shared Variable System 68
4.8 Diagram of a System component of the Shared Variable System 69
4.9 Sample output for a System instance of the Shared Variable System 70
4.10 Code listing for Channel component of the Heap Channel System 70
4.11 Code listing for System component of the Heap Channel System 72

5.1 Example transaction . 78
5.2 Example mutable phase access set calculation 80
5.3 Diagram of a stack frame . 83
5.4 Diagram of the stack after the immutable phase for single action-reaction . . 87
5.5 Heap link example . 91
5.6 Diagram of a Simple Network Time Protocol (SNTP) client 94

6.1 Transition diagram for the state component of the dynamic transaction state 99

v

6.2 Race graph for the AsyncClock system . 111
6.3 AsyncClock Thread Histogram of Throughput 114
6.4 AsyncClock Instance Histogram of Throughput 114
6.5 AsyncClock Partitioned Histogram of Throughput 115
6.6 AsyncClock Thread Utilization vs. Throughput 116
6.7 AsyncClock Instance Utilization vs. Throughput 117
6.8 AsyncClock Partitioned Utilization vs. Throughput 117
6.9 AsyncClock Thread Voluntary Context Switches vs. Throughput 118
6.10 AsyncClock Instance Voluntary Context Switches vs. Throughput 119
6.11 AsyncClock Partitioned Voluntary Context Switches vs. Throughput 119
6.12 AsyncClock Thread Entanglement vs. Throughput 121
6.13 AsyncClock Instance Entanglement vs. Throughput 122
6.14 AsyncClock Partitioned Entanglement vs. Throughput 123
6.15 AsyncClock Thread Histogram of Latency 124
6.16 AsyncClock Instance Histogram of Latency 124
6.17 AsyncClock Partitioned Histogram of Latency 125
6.18 AsyncClock Throughput . 126
6.19 AsyncClock Latency . 127
6.20 SyncClock Thread Histogram of Throughput 129
6.21 SyncClock Instance Histogram of Throughput 129
6.22 SyncClock Partitioned Histogram of Throughput 130
6.23 SyncClock Thread Utilization vs. Throughput 131
6.24 SyncClock Instance Utilization vs. Throughput 131
6.25 SyncClock Partitioned Utilization vs. Throughput 132
6.26 SyncClock Thread Voluntary Context Switches vs. Throughput 133
6.27 SyncClock Instance Voluntary Context Switches vs. Throughput 133
6.28 SyncClock Partitioned Voluntary Context Switches vs. Throughput 134
6.29 SyncClock Thread Entanglement vs. Throughput 135
6.30 SyncClock Instance Entanglement vs. Throughput 135
6.31 SyncClock Partitioned Entanglement vs. Throughput 136
6.32 SyncClock Thread Histogram of Latency . 137
6.33 SyncClock Instance Histogram of Latency 138
6.34 SyncClock Partitioned Histogram of Latency 138
6.35 SyncClock Throughput . 139
6.36 SyncClock Latency . 140

vi

Acknowledgments

Blessed be the God and Father of our Lord Jesus Christ, the Father of mercies
and God of all comfort 2 Corinthians 1:3

First and foremost, I would like to thank my wife who has been beside me every step of the

way.

I am forever grateful for the patience, guidance, and wise counsel of my advisor Dr. Gill.

The seed for this dissertation was planted by Dr. Roman in the basement of Lopata Hall

during a course on UNITY. He was lecturing on the development of structured programming

and the give and take between formal methods and practice. I am grateful to Dr. Roman

for introducing me to the clarity of thinking that comes from formal models.

I would like to thank the Department of Computer Science and Engineering, the National

Science Foundation, and the Ford Motor Company for their generous financial support.

Justin Wilson

Washington University in Saint Louis

December 2016

vii

ABSTRACT OF THE DISSERTATION

A Transactional Model and Platform for Designing and Implementing Reactive Systems

by

Justin Wilson

Doctor of Philosophy in Computer Science

Washington University in St. Louis, December 2016

Research Advisor: Professor Christopher Gill

A reactive program is one that has “ongoing interactions with its environment” [66]. Reac-

tive programs include those for embedded systems, operating systems, network clients and

servers, databases, and smart phone apps. Reactive programs are already a core part of our

computational and physical infrastructure and will continue to proliferate within our society

as new form factors, e.g. wireless sensors, and inexpensive (wireless) networking are applied

to new problems.

Asynchronous concurrency is a fundamental characteristic of reactive systems that makes

them difficult to develop. Threads are commonly used for implementing reactive systems,

but they may magnify problems associated with asynchronous concurrency, as there is a gap

between the semantics of thread-based computation and the semantics of reactive systems:

reactive software developed with threads often has subtle timing bugs and tends to be brittle

and non-reusable as a holistic understanding of the software becomes necessary to avoid

concurrency hazards such as data races, deadlock, and livelock. Based on these problems

viii

with the state of the art, we believe a new model for developing and implementing reactive

systems is necessary.

This dissertation makes four contributions to the state of the art in reactive systems. First,

we propose a formal yet practical model for (asynchronous) reactive systems called reactive

components. A reactive component is a set of state variables and atomic transitions that

can be composed with other reactive components to yield another reactive component. The

transitions in a system of reactive components are executed by a scheduler. The reactive

component model is based on concepts from temporal logic and models like UNITY [20] and

I/O Automata [64]. The major contribution of the reactive component model is a formal

method for principled composition, which ensures that 1) the result of composition is always

another reactive component, for consistency of reasoning; 2) systems may be decomposed to

an arbitrary degree and depth, to foster divide-and-conquer approaches when designing and

re-use when implementing; 3) the behavior of a reactive component can be stated in terms of

its interface, which is necessary for abstraction; and 4) properties of reactive components that

are derived from transitions protected by encapsulation are preserved through composition

and can never be violated, which permits assume-guarantee reasoning.

Second, we develop a prototypical programming language for reactive components called

rcgo that is based on the syntax and semantics of the Go programming language. The

semantics of the rcgo language enforce various aspects of the reactive component model,

e.g., the isolation of state between components and safety of concurrency properties, while

permitting a number of useful programming techniques, e.g., reference and move semantics

for efficient communication among reactive components. For tractability, we assume that

each system contains a fixed set of components in a fixed configuration.

ix

Third, we provide an interpreter for the rcgo language to test the practicality of the assump-

tions upon which the reactive component model are founded. The interpreter contains an

algorithm that checks for composition hazards like recursively defined transitions and non-

deterministic transitions. Transitions are executed using a novel calling convention that can

be implemented efficiently on existing architectures. The run-time system also contains two

schedulers that use the results of composition analysis to execute non-interfering transitions

concurrently. Fourth, we compare the performance of each scheduler in the interpreter to

the performance of a custom compiled multi-threaded program, for two reactive systems.

For one system, the combination of the implementation and hardware biases it toward an

event-based solution, which was confirmed when the reactive component implementation

outperformed the custom implementation due to reduced context switching. For the other

system, the custom implementation is not prone to excessive context switches and outper-

formed the reactive component implementations. These results demonstrate that reactive

components may be a viable alternative to threads in practice, but that additional work is

necessary to generalize this claim.

x

Chapter 1

Introduction

1.1 Reactive Programs and Systems

Manna and Pnueli classify programs as either being transformational or reactive [66]. As

implied by their name, transformational programs transform a finite input sequence into a

finite output sequence. Transformational programs often can be divided into three distinct

phases corresponding to the activities of input, processing, and output. A compiler is an

example of a transformational program as it transforms a source file into an object file.

Formal models of computation like the Turing machine [94] and λ-calculus [21] are concerned

with transformational programs.

In contrast, a reactive program is characterized by “ongoing interactions with its environ-

ment” [66]. A reactive program must share resources with its environment to facilitate

communication. From the perspective of the reactive program, input occurs when the envi-

ronment acts on the reactive program and output occurs when the reactive program acts on

the environment. The manipulation of resources that are internal to a reactive program is

generically referred to as processing.

Whereas transformational programs are designed to halt and produce an output, reactive

programs are often designed to run forever. The activities of input, processing, and output

are thus recurring and often overlapped in the execution of a reactive program. Designers

of reactive programs then must often reason about infinite event sequences containing inter-

leaved input, processing, and output. A web server is a example of a reactive program as it

repeatedly receives requests, processes them, and sends responses. Reactive systems include

1

operating systems, databases, networked applications, interactive applications, and embed-

ded systems. A number of formal models have been developed to reason about reactive

systems, and include the Calculus of Communicating Systems [68], the Algebra of Commu-

nicating Processes [15], Cooperating Sequential Processes [32], Communicating Sequential

Processes [52], Kahn Process Networks [56], the Actor Model [50][22][8], UNITY [20], and

I/O Automata [64].

Asynchronous concurrency is a fundamental characteristic of reactive systems that makes

them difficult to design and develop. Concurrency refers to the idea that a reactive program

and its environment may act at the same time. In synchronous models, a reactive program

and its environment share a common clock that allows the reactive program to coordinate

access to shared resources, e.g., the environment writes a shared variable in one clock cycle

and the reactive program reads it in the next. However, shared clocks are difficult to im-

plement and do not scale. Consequently, many reactive systems are asynchronous, meaning

that the reactive program and the environment evolve independently with respect to time.

To facilitate communication, asynchronous models include facilities for atomicity that allow

a reactive program to act without being interrupted by its environment and vice versa. These

facilities for atomicity allow a reactive program to synchronize with its environment, as the

atomic events play the role of a shared clock. A common approach to ensuring correctness

in asynchronous models is to view the environment as an adversary that may deliver inputs

at inopportune times.

State is fundamental to reactive systems and may be modeled directly or indirectly. Some ex-

amples of indirect approaches to modeling state include monads [96] which are typically used

in functional languages such as Haskell, or mail queues with message-behavior pairs [8] which

are used in actor-oriented languages such as Erlang. The imperative programming paradigm

models state directly using variables and assignment and the dominant languages used to

implement reactive systems, such as C, C++, and Java, are based on this paradigm. As we

are interested in expressing reactive semantics directly, we limit the remaining discussion to

reactive systems based on the imperative programming paradigm.

The imperative programming paradigm when presented using structured programming tech-

niques attempts to express a (transformational) computation as a sequence of statements.

The computation being performed is realized by executing each statement in the sequence

2

where a statement is either an assignment statement, a condition (if/else), or a loop. Control

flows from one statement to the next unless altered by a condition or loop. A locus of control

is called a thread. Statements compose sequentially, that is, a sequence of statements can be

thought of as a single statement that performs the computation of the sequence in one step.

Imperative programming languages often permit the definition of procedures, e.g., subrou-

tines, functions, macros, etc., as a way to abstract sequences of statements or expressions.

Control passes from the calling sequence to the sequence indicated by the procedure and

returns to the calling sequence when the procedure terminates. The semantics of calling a

procedure are completely compatible with the sequential composition of statements.

Many reactive programs are multi-threaded and are designed to use the facilities of a con-

ventional operating system. For the discussion to follow, we consider each thread in a

multi-threaded program to be a reactive program. The environment for a thread then is the

operating system and the other threads with which it directly interacts. This matches the

definition of a reactive program as each thread will have ongoing interactions with its envi-

ronment, i.e., interact with the operating system and other threads. This also matches the

definition of asynchronous concurrency as the thread and its environment share no common

clock and can interact asynchronously. To be more specific, a system call is asynchronous

from the perspective of the operating system and threads may receive asynchronous signals

from the operating system and from each other.

1.2 Trends

Developments in hardware and software platforms have resulted in an increasing demand for

reactive systems. Embedded systems continue to proliferate due to advances in hardware that

continue to produce new platforms, form factors, sensors, actuators, and price points, which

allow embedded computers to be applied to a variety of application domains. Individuals,

businesses, and governments are also deploying networks of sensors and actuators to monitor,

control, and coordinate critical infrastructures such as power grids and telecommunication

networks. These advances also have led to platforms for individual users, such as smart

phones, e-readers, and tablets. Applications for these personal platforms are necessarily

interactive and therefore reactive. The leveling-off of processor speeds and the resulting

3

trend toward multi-core processors is also creating demand for reactive systems, as increases

in performance must come through increasingly concurrent applications [89].

A general trend toward distribution is also driving demand for reactive systems. Increasingly,

network services form the core (or are at least a critical component) of many applications

and are fundamental to delivering the content (e.g., downloading books and movies) and

communication (e.g., using social media) that drive the application. More and more devices

are being equipped with (especially wireless) network adapters due to the introduction of

inexpensive networking technologies. Networks are now also emerging, as opposed to being

intentionally deployed, in environments such as the home, office, hospitals, etc. Applica-

tions that take advantage of these new networks are necessarily reactive. The trend toward

distribution is already established in enterprise computing infrastructures where networked

systems like file servers, print servers, web servers, application servers, and databases are

critical or central to supporting business processes and achieving business objectives.

Given the continued proliferation of reactive systems, their number, diversity, and complexity

is likely to increase as they encompass more and more interactions. This is most evident in

large-scale distributed systems where a computation is spread over a variety of nodes. Such

systems often evolve as new sub-systems are introduced and integrated into the existing in-

frastructure. The individual nodes themselves may also contain a variety of interactions. For

example, it is not uncommon to find a smart phone application that concurrently interacts

with the user via a graphical user interface, an application server via an Internet connection,

and sensors (e.g., accelerometers) that are embedded in the hardware. Similarly, sophisti-

cated servers like web servers and databases are often built from collections of interacting

reactive modules.

1.3 Limitations of the State of the Art

Failure to account for asynchronous concurrency may result in a reactive program with timing

bugs, meaning that correct execution depends on arbitrary scheduling decisions. Timing bugs

may be manifested when the schedule of events is perturbed, e.g., due to the introduction of

a new processor or operating system, or when part of the program takes more or less time

than normal. Operating systems are particularly susceptible to timing bugs caused by device

4

drivers [83]. Timing bugs can escape even a rigorous software development process and may

lay dormant for years [62]. Furthermore, timing bugs are notoriously difficult to diagnose,

inspiring the term heisenbug, a bug that disappears or changes its behavior when someone is

attempting to find it (because the debugging process alters the timing of the program) [4].

Timing bugs can cost many hours of debugging time and can lead to a poor user experience,

e.g., a non-responsive device or application, and loss of revenue, e.g., when an advertisement

service cannot be used while a server reboots.

Introducing asynchronous concurrency into the imperative programming paradigm places a

burden on developers as they must explicitly identify the statement sequences that must be

atomic. The misuse of synchronization primitives, which becomes likely as state transitions

become complex, may introduce concurrency hazards (e.g., deadlock [32]) which manifest

themselves as timing bugs.

A number of design patterns for concurrency have been developed to help developers avoid

concurrency hazards [84], [61]. These design patterns represent a move toward implicit

atomicity as they often attempt to leverage language features to control atomicity (e.g.,

scoped locking [84]). While some of these patterns have been incorporated into programming

languages (e.g., the synchronized keyword of Java implements the thread-safe interface

pattern [84]), they are most often enforced only by convention and therefore easily violated

or ignored (e.g., if a new developer is unaware of the convention). In practice, explicit

atomicity and the corresponding use of synchronization primitives has proven to be tedious

and error prone [89].

Correct synchronization in sequential imperative programs is a holistic problem that re-

sists encapsulation. Sequential imperative programs, both transformational and reactive,

are often designed using functionally modular principles such as procedural programming,

object-oriented programming, and functional programming. A transition in a reactive pro-

gram then is typically distributed over a variety of modules, i.e., the graph of procedure calls.

The challenge for a developer then is to identify all of the shared state and then use syn-

chronization primitives to guard concurrent updates. Proper synchronization is based upon

a complete understanding of the call graph (which may not be fully known due to aliasing).

The resulting code tends to be brittle as modifications tend to introduce new timing bugs.

5

1.4 Challenges

Two primary challenges must be addressed to overcome the current limitations noted in

Section 1.3: reducing accidental complexity and providing techniques for composing and

decomposing reactive systems in a principled manner. We discuss each of these challenges

in turn.

Reduce accidental complexity. A key challenge towards adequately supporting complex

reactive systems is to reduce the accidental complexity associated with their design and

implementation. For software, accidental complexity is defined as the “difficulties that today

attend its production but that are not inherent [18].” One source of accidental complexity is

the conflation of semantics, where a problem naturally expressed using one set of semantics

is implemented with a different set of semantics resulting in a semantic gap and obfuscation.

To illustrate, Lee shows how the common practice of introducing thread-based concurrency

via a library to an inherently sequential language significantly alters the semantics of the

language [62]. As described in the previous section, we claim that the currently dominant

approaches to developing reactive systems rely on inherently transformational languages

that have been augmented with features for concurrency, which introduces an example of

the kind of problem that Lee has identified. Thus, reducing the accidental complexity in

reactive systems requires an approach that provides direct support for reactive semantics

and addresses the inherent difficulties of asynchronous concurrency.

Achieve principled composition and decomposition. Decomposition and composition

are essential techniques when designing, implementing, and understanding complex systems.

Decomposition, dividing a complex system into a number of simpler systems, is often used

when designing a system, e.g., through top-down design [100]. Composition, building a

complex system from a number of simpler systems, is often used when implementing a system;

i.e., simpler systems are implemented, tested, and integrated to create larger systems [18].

Often, the simplest systems in a design are common and can be reused across problem

domains. Similarly, systems in the same problem domain often have common sub-systems.

Thus, a common goal in software engineering is fostering design processes that produce

and leverage reusable components. Decomposition also often imparts a logical organization

6

to a system when the resulting sub-systems are cohesive, i.e., each sub-system has a well-

defined purpose [75]. Thus, decomposition is a significant aid to understanding and managing

complex systems.

Asynchronous concurrency undermines decomposition and composition when not properly

encapsulated and therefore limits our ability to design and implement complex reactive

systems. Such problems of asynchronous concurrency stem from the interactions between

reactive programs. Decomposition increases the number of reactive programs constituting a

system, which in turn increases the number of susceptible interactions and opportunities for

timing bugs. For decomposition to achieve an overall reduction in complexity when designing

a reactive system, it must reduce the amount of reasoning that must be performed at each

level of the design. Thus, it must be possible to replace the details of how a reactive program

is implemented with higher-level statements about its behavior in terms of its interface.

A second challenge then is to ensure that reactive systems can be decomposed and composed

in a principled way. A design process based on composition and decomposition tends to be

effective when the model adheres to certain principles:

1. The model should define units of composition and a means of composition. Obviously,

a model that does not define a unit of composition and a means of composition cannot

support a design process based on composition or decomposition.

2. The result of composition should either be a well-formed entity in the model or be

undefined. Thus, it is impossible to create an entity whose behavior and properties

go beyond the scope of the model and therefore cannot be understood in terms of the

model. When the result of composition is defined, it should often (if not always) be a

unit of composition. This principle facilitates reuse and permits decomposition to an

arbitrary degree.

3. A unit of composition should be able to encapsulate other units of composition. When

this principle is combined with the previous principle, the result is recursive encap-

sulation which permits decomposition to an arbitrary depth. Recursive encapsulation

allows the system being designed to take on a hierarchical organization.

4. The behavior of a unit of composition should be encapsulated by its interface. Encap-

sulation allows one to hide implementation details and is necessary for abstraction.

7

5. Composition should be compositional meaning that the properties of a unit of compo-

sition can be stated in terms of the properties of its constituent units of composition.

Thus, when attempting to understand an entity resulting from composition, one need

only examine its constituent parts and their interactions. To illustrate, consider a sys-

tem X that is a pipeline formed by composing a filter system F with reliable FIFO

channel system C. This principle states that the properties of the composed Filter-

Channel X can be expressed in terms of the properties of the Filter F and Channel C.

Compositionality requires the ability to establish properties for units of composition

that cannot be violated through subsequent composition.

6. Units of composition should have some notion of substitutional equivalence. If a unit of

composition X contains a unit of composition Y , then a unit of composition X ′ formed

by substituting the definition of Y into X should be equivalent to X. Substitutional

equivalence guarantees that we can compose and decompose at will and summarizes

the preceding principles. We believe that substitution should be linear in the size of the

units of composition. To illustrate, suppose that X and Y are mathematical functions

in the description above. If we take the size of a unit of composition to be the number

of terms in the definition of a function then |X ′| ≈ |X|+ |Y |.

A model adhering to these principles facilitates and supports principled composition and

decomposition. Principled composition requires language support for interfaces, definitions,

and substitutional equivalence. A variety of useful domains including mathematical ex-

pressions, object-oriented programming, functional programming, and digital logic circuits

support principled composition.

Reactive programs based on threads are not necessarily subject to principled decomposition

and composition. To illustrate, consider three imperative reactive programs (threads) A, X,

and Y where A is composed of X and Y . Principled composition requires that the definition

of A can be formed by substituting the definitions of X and Y . To preserve the reactive

semantics when composing X and Y , one must consider all pairs of transitions, i.e., the

Cartesian product, which represents all possible interleavings between the two statement

sequences. The result of composition then is a two-dimensional torus where each node rep-

resents a compound state, each edge represents a transition, and each direction corresponds

to executing a statement in X and/or Y . Appropriate measures must be taken to ensure

8

that all transitions, i.e., all vertical, horizontal, and diagonal moves in the torus, are well-

defined, i.e., explicit atomicity. We observe that 1) no existing platforms support the direct

definition of such tori and 2) reasoning about a two-dimensional torus (or N -dimensional

for N composed sequences) is qualitatively different that reasoning about a single sequence.

Thus, reactive programs based on the imperative programming paradigm are not necessarily

subject to recursive encapsulation and substitutional equivalence.

1.5 Approach and Contributions

To reduce the accidental complexity associated with the design and implementation of re-

active systems while supporting principled composition and decomposition, we propose a

transactional model for reactive systems called reactive components. A reactive component

is a set of state variables and a set of atomic transitions that operate on those state vari-

ables. Linking a transition in one component to a transition in another component yields

another transition that operates on the state variables of the constituent components. A

transition-oriented approach resolves the main difficulties of the control-oriented imperative

approach. In the reactive component model, transitions are atomic. This relieves developers

from the burden of identifying and guarding critical sections. The composability of transi-

tions allows developers to create complex state transitions independent of control flow. This

relieves developers from needing a holistic understanding of the call graph when composing

a complex state transition.

This research makes the following contributions to the state of the art in reactive system

development. After presenting necessary background and related work in Chapter 2, we

present the novel reactive component model in Chapter 3. In Chapter 4, we present rcgo: a

programming language for reactive components based on the Go programming language. For

tractability, we assume systems with a fixed number of components in a fixed configuration.

Chapter 5 describes the implementation of an interpreter for rcgo including the algorithm

that checks a system for sound composition, a calling convention for transitions, the imple-

mentation of move semantics, and an approach to file descriptor I/O. Chapter 6 describes

the design, implementation, and evaluation of two concurrent schedulers. The schedulers are

compared to a custom multi-threaded application for two reactive systems. For one system,

9

the reactive component implementation outperforms the custom application while the cus-

tom application outperforms the reactive component implementation for the other system.

The results demonstrate that reactive components may be a viable alternative to threads

but additional work is necessary to generalize this claim. Chapter 7 presents conclusions

and describes future work that is motivated and enabled by this dissertation.

10

Chapter 2

Background and Related Work

In this chapter, we first present background on the semantics of reactive systems. We then

provide a survey of other work related to this dissertation, with a particular emphasis on

the UNITY and I/O Automata models upon which the approach presented here improves

in specific ways.

Reactive semantics. State (memory) is fundamental to reactive systems as past inputs

influence future behavior. Baeten concludes that the first step towards developing algebraic

models for reactive systems was “abandoning the idea that a program is a transformation

from input to output, replacing this by an approach where all intermediate states are im-

portant” [13]. The state of a reactive system is often captured in: program variables, e.g.,

in Dijkstra’s Cooperating Sequential Processes [32]; messages in a channel or queue, e.g.,

in Milner’s Calculus of Communicating Systems [68] and in the Actor Model [8]; or some

combination of the two, e.g., in Kahn Process Networks [56].

Computation in a reactive system then can be viewed as a sequence of state transitions [77].

As these transitions may be complex, platforms typically allow complex state transitions

to be composed from primitive state transitions and complex states, e.g., arrays, records,

tuples, lists, sets, etc., to be composed from primitive states. Three orthogonal techniques

for composing complex state transitions are expressions, sequential composition, and paral-

lel composition. Expressions raise the level of abstraction by summarizing a computation

whose intermediate results are unimportant. A compiler or interpreter is free to schedule

the evaluation of an expression in any way that preserves the semantics of the expression.

11

Sequential composition is based on the idea that complex state transformations can be de-

composed into a sequence of simpler state transformations. Parallel composition is based

on the idea that complex state transformations can be composed by relating simpler state

transformations, e.g., parallel assignment [14]. Conceptually, the right-hand side (RHS) of a

parallel assignment is computed before any of the variables on the left-hand side (LHS) are

modified.

We distinguish between a reactive program which is a static description of a set of transitions

and a reactive process which is the realization of the transitions of the corresponding reactive

program. State may be private meaning that it may only be updated by a single reactive

process or shared meaning that it may be updated by multiple reactive processes. The

stack associated with a thread and thread specific storage are common examples of private

state. Shared state is often organized using abstraction where updates to shared state are

exposed in the form of structured transitions as opposed to raw assignment, e.g., a method

or function to place a message in a queue. Synchronization and communication are identified

as necessary activities in a reactive system [9]. The two approaches to communication are

shared variables and message passing [9].

Multiple reactive processes effect state transitions that overlap in time, which is called con-

currency. Simultaneous state transitions, i.e., those that overlap in real time, require parallel

physical resources. State transitions that are formed by sequential composition may be over-

lapped by interleaving the primitive transitions of the corresponding complex transitions.

The result of concurrent state transitions that update the same (shared) state may be un-

defined. Consequently, updates to shared state must be coordinated to prevent corruption.

Platforms for reactive systems, therefore, include the notion of atomicity which says that

certain transitions may not be interrupted, i.e., executed simultaneously or interleaved with

another transition. An event is an atomic state transition.

Non-determinism is another inherent attribute of reactive systems that conveys the idea that

the order of events in a reactive system is not fixed. Non-determinism is typically combined

with atomicity to ensure that transitions are well-defined. In a pair of events operating on

the same state, for example, atomicity says that one event will be executed before the other

while non-determinism says that the order in which they are executed is not determined.

12

True concurrency, i.e., simultaneity, is often modeled using a non-deterministic sequence of

atomic events, e.g., [64], [20], [66].

As a sequence of atomic transitions, a reactive process (or rather the reactive program that

defines it) may either have deterministic sequencing or non-deterministic sequencing. As im-

plied by the name, the order of transitions in a reactive process with deterministic sequencing

is completely determined, i.e., there is always a single next transition (or termination). The

sequence of state transitions is called a flow of control. Reactive processes with deterministic

sequencing are often based on an (infinite) loop that repeats for the duration of the reactive

process. Influential models based on deterministic sequencing include Dijkstra’s Cooperating

Sequential Processes [32] and Hoare’s Communicating Sequential Processes [52].

Conversely, the order of transitions in a reactive process with non-deterministic sequencing

is not completely determined, i.e., the next transition is selected from a set of candidates.

Platforms supporting reactive processes with non-deterministic sequencing include a sched-

uler, which chooses among the available transitions. Reactive programs with deterministic

sequencing correspond to a (circular) list of transitions while reactive programs with non-

deterministic sequencing correspond to a set of transitions. Deterministic sequencing and

non-deterministic sequencing only describe individual reactive processes as the global choice

for the next transition is in general non-deterministic. Influential models based on non-

deterministic sequencing include the UNITY model of Chandy and Misra [20] and Lynch’s

I/O Automata [64].

Atomicity may either be explicit or implicit in a model for reactive systems. Platforms

that support reactive processes with deterministic sequencing and shared variables typically

include primitive transitions called synchronization primitives, e.g., test-and-set, compare-

and-swap, that may atomically update state and/or alter the flow of control [9]. Synchro-

nization primitives can be used to construct more general synchronization mechanisms like

semaphores and monitors [32]. The goal of synchronization is to create atomic sequences

of transitions called critical regions or critical sections [9]. Atomicity, therefore, is made

explicit by the programmer. Message passing combines communication with synchroniza-

tion to achieve implicit atomicity in reactive programs based on deterministic sequencing [9].

Non-deterministic sequencing requires that all transitions be atomic and therefore implies

implicit atomicity.

13

Related work. Reactive systems are designed and implemented using shared variables

and/or message passing. A popular approach to reactive systems is the pairing of shared

variables with deterministic sequencing and explicit atomicity as is done in Dijkstra’s Coop-

erating Sequential Processes [32]. Andrews and Schneider describe a number of techniques

associated with this approach including coroutines, fork/join, spin locks, semaphores, con-

ditional critical regions, and monitors [9]. This model is supported by widely available

platforms, i.e., operating systems, via processes with shared memory or threads [86]. A

number of architectural patterns have been developed based on this approach, e.g., [84],

[61]. As described by Lee [62], support for this model can be integrated into an existing

sequential language through an external library, e.g., POSIX threads, or extensions to the

base language, e.g., Cilk [16], Split-C [28], C++11 [5]. Sutter and Larus [89] and Lee [62]

provide a modern perspective on the difficulties associated with this approach. In [89], the

authors call for “OO for concurrency–higher-level abstractions that help build concurrent

programs, just as object-oriented abstractions help build large componentized programs.”

The work presented in this dissertation is a step in this direction.

Transactional memory has been proposed as an alternative to locks when synchronizing mul-

tiple processes. Transactional memory was inspired by the atomic transactions of databases [36].

Knight [57] and then Herlihy and Moss [49] proposed cache-based hardware support for trans-

actional memory. Transactional memory is forthcoming on modern processors [81]. Software

transactional memory, proposed by Shavit and Touitou [85], has sparked a great deal of in-

terest and has been implemented in a number of languages, e.g., Clojure [48].

Another technique for designing and implementing reactive systems that is receiving renewed

interest is promises and futures [40, 72]. Promises and futures represent two sides of a

deferred computation. The consumer of a deferred computation receives a future that it

can later interrogate for the values produced by the deferred computation. The producer of

a deferred computation receives a promise that it later fulfills by performing the deferred

computation.

Another popular approach to reactive systems is messaging passing with deterministic se-

quencing as is done in Hoare’s Communicating Sequential Processes [52]. This model is also

supported by widely available platforms via pipes, message queues, and sockets [86]. Go

14

is a modern programming language with language support for the Communicating Sequen-

tial Processes model [2]. A message passing channel may either be unbounded or have a

fixed size and may be accessed synchronously or asynchronously by either the sender or the

receiver [9].

Events, as proposed by Ousterhout [73], and embodied in the Reactor and Proactor archi-

tectural patterns [84], offer a popular technique for structuring user applications based on

deterministic sequencing. The application is designed around a loop that multiplexes I/O

events from the operating system using a polling function like select or poll. In response

to an I/O event, the application invokes an (atomic) event handler that may update the

state of the process and perform non-blocking I/O on various channels. Events invert the

flow of control since high-level functions, e.g., processing a message, are triggered by low-

level functions, e.g., receiving a byte. The context of each computation must be managed

explicitly which is referred to as “stack ripping” [7]. Event handlers from different logical

computations may be interleaved giving the illusion of concurrency while avoiding the chal-

lenges of synchronization. Event systems wishing to take advantage of true concurrency

must use multiple event loops and face all of the challenges of multi-threaded programming.

Node.js [88] and ECMA Script (JavaScript) [34] are two modern programming languages

based on an event loop.

UNITY and I/O Automata. The UNITY model of Chandy and Misra [20] and the

I/O Automata model of Lynch [64] are two influential models for reactive systems based on

non-deterministic sequencing. In these models, a scheduler repeatedly executes transitions

selected non-deterministically from the set of possible transitions. The scheduler is assumed

to be fair, meaning that it will execute a transition an infinite number of times in an infinite

execution. Transitions correspond to (parallel) assignment statements in the UNITY model

and actions in the I/O Automata model. The UNITY model contains two means of com-

posing programs which suggests that a model based on non-deterministic sequencing could

support principled decomposition. Creating a program via the union operation involves

taking the union of the state variables (name-based equivalence) and assignment statements

of the constituent programs. Superposition is a means of composition that transforms an

underlying program into another. The transformation is allowed to add new state variables,

add new assignment statements with the limitation that they only update new variables,

15

and augment existing assignment statements but only by adding clauses that modify new

variables. The size of the resulting program (measured in assignment statements) is on the

order of the sum (as opposed to the product) of the sizes of the two constituent programs.

Superposition is property-preserving while union is not property-preserving. However, su-

perposition has certain weaknesses, as described by the authors of UNITY [20]:

Both union and superposition are methods for structuring programs. The

union operation applies to two programs to yield a composite program. Unlike

union, a transformed program resulting from superposition cannot be described in

terms of two component programs, one of which is the underlying program. The

absence of such a decomposition limits the algebraic treatment of superposition.

Furthermore, a description of augmentation seems to require intimate knowledge

of statements in the underlying program. Appropriate syntactic mechanisms

should be developed to solve some of these problems.

They go on to note that a restricted form of superposition, i.e., one that only adds variables

and assignment statements, is equivalent to union and can be analyzed as such.

The essence of superposition is that a transition in one program can be linked to a transition

in another program, i.e., parallel composition. Whereas UNITY lacks language support for

doing so, the I/O Automata [64] model presents a partial solution by associating names with

transitions (actions). Actions in different Automata can then be composed on the basis of

name matching. The I/O Automata model defines three kinds of actions: output actions,

input actions, and internal actions. Output actions and internal actions, collectively called

local actions, contain guards and may be executed by the scheduler. Each input action must

be composed with an output action to be executed. Output actions can produce values that

are consumed by input actions. Since the state of each I/O automaton is private, composition

in the I/O Automata model is property-preserving.

Of interest to this dissertation is the improvement and implementation of these ideas and

their application to the design and development of reactive systems. Granicz et al. propose

a compilation method for UNITY in their Mojave compiler framework [46]. Other initiatives

to implement the UNITY programming language are summarized in [46]:

16

Few compilers have been developed for the UNITY language. DeRoure’s

parallel implementation of UNITY [31] compiles UNITY to a common backend

language, BSP-occam; Huber’s MasPar UNITY [54] compiles UNITY to MPL

for execution on MasPar SIMD computers; and Radha and Muthukrishnan have

developed a portable implementation of UNITY for Von Neumann machines [79]1.

Goldman’s Spectrum Simulation System [44] allows one to simulate systems expressed as I/O

Automata. The IOA toolkit is an implementation of I/O Automata focused on verification

and simulation [3]. The IOA toolkit does contain a source-to-source compiler (IOA to Java)

and a run-time system that has been used to compile and execute distributed protocols [43].

Summary. Formal models of reactive systems may be organized around sequential threads

with shared variables, e.g., Cooperating Sequential Processes [32], sequential threads with

message-passing, e.g., Communicating Sequential Processes [52], atomic transitions with

shared variables, e.g., UNITY [20], and atomic transitions with message-passing, e.g., I/O

Automata [64]. Models based on atomic transitions avoid reasoning about the interleaved ex-

ecution of threads which may simplify reasoning about reactive systems. Combining atomic

transitions with message passing (I/O Automata) creates the opportunity for property-

preserving composition which is problematic in models based on shared variables, e.g.,

UNITY. The reactive component model described in Chapter 3 of this dissertation extends

the property-preserving composition techniques of I/O Automata by permitting composi-

tion to an arbitrary depth and degree using the superposition technique of UNITY to link

transitions in different modules in a principled way.

Reactive semantics may be introduced via libraries or built into a language. Taking an

inherently transformational language and introducing reactive semantics via a library may

significantly alter the semantics of the language. With respect to language support, an

inherently transformational language may be augmented with features to support reactive

semantics or the language can be designed around a particular approach to reactive systems.

Go with CSP-style primitives is an example of the former and Erlang as a realization of the

Actor model is an example of the latter. Language support has the potential to raise the

level of abstraction and provides the opportunity to check and enforce reactive semantics. To

1We believe all of these projects, including [46], are now defunct.

17

date, the main focus areas of languages designed around the atomic transition paradigm have

been parallel computing and simulation. The rcgo language presented in Chapter 4 of this

dissertation instead focuses on practical concerns of software engineering such a reference

semantics for the efficient implementation of data structures, move semantics for efficient

communication, and the isolation of state for property-preserving composition. Similarly,

there are few results concerning the design, implementation, and evaluation of fair schedulers,

which are a necessary piece of run-time systems that support atomic transitions. Chapter 5

of this dissertation describes the design, implementation, and evaluation of two concurrent

fair schedulers.

18

Chapter 3

Reactive Component Model

In this chapter, we present a new model for composing and decomposing reactive programs

via reactive components. The model is biased toward practical software development even as

it enforces properties based in formal methods. Consequently, the model favors utility, prac-

ticality, flexibility, and ease of implementation. Unlike UNITY in which composition is not

property-preserving, the composition of reactive components is property-preserving which

facilitates hierarchical and modular reasoning. Unlike I/O Automata in which transitions

have limited depth, a transition among reactive components may access and cascade to an

arbitrary number of other components, which permits decomposition to an arbitrary depth

and degree.

19

3.1 Features of the Model

man
active

pull port

man

man
passive

pull port

expression

getter

precondition

action

transition

transition

call

man

man

man
active

push port

activate

man
passive

push port

reaction

state variables

Figure 3.1: Features of a reactive component

Figure 3.1 shows the major features of a reactive component. As in other state-based formal

models like UNITY [20] and I/O Automata [64], the core of a reactive component in this

model is a set of state variables and a set of atomic transitions that manipulate those state

variables. When reasoning about a system, behavior is expressed as propositions over the

state variables where the propositions are derived from the transitions.

The reactive component model defines interface elements and composition semantics that

allow reactive programs to be composed in a principled way. For example, an active push

port allows a transition in one component to be linked to a transition in another component

such that the resulting combined transition is atomic. Active push ports allow reactive com-

ponents to publicize their behavior. An active push port may be bound to and conditionally

activate zero or more passive push ports. A passive push port names the corresponding

transition that will be executed when the passive push port is activated. This combination

20

of passive push port and transition is called a reaction because it reacts to a transition in

another component.

The atomic linkage of a transition in one component to a transition in another component

through the push port mechanism allows the properties of each component to be related to

one another and more complex systems to be constructed by composing simpler systems.

Transitions that are not executed via a passive push port are executed by the scheduler. A

transition of this kind may be governed by a Boolean expression called a precondition. The

combination of a precondition and transition is called an action because it is a voluntary

transition under the control of the containing component.

An active pull port represents an immutable external data dependency. The component may

call an active pull port to yield a value required in a transition. Active pull ports must

be bound to a passive pull port which resembles a function returning one or more values.

Associated with a passive pull port is an expression that may interrogate the state of the

corresponding component or call other pull ports. The combination of a passive pull port

and an expression is called a getter. Where push ports allow components to publicize their

behavior, pull ports allow components to safely publicize their internal state for use by other

components.

Composition in the reactive component model has two main features. The first is recursive

encapsulation where a state variable in one component may represent an instance of another

reactive component. The second is the ability to bind push ports and pull ports through

an explicit set of bindings. The decision to use an explicit set of bindings (as opposed to

implicit named-based matching) is more in keeping with the goals and techniques of practical

software development, since it facilitates the use of software developed under different naming

conventions, i.e., third-party software. A third minor feature called exporting is the ability

of an encapsulating component to adopt interface elements of its sub-components without

defining complimentary ports and transitions that do nothing but forward an activation or

call. The ability to publicize behavior and state and the ability to assemble well-defined

behavior from existing behaviors in a straight-forward and flexible way are thus defining

characteristics of the reactive component model.

21

Web Server

verify(HttpHeader)

request(HttpRequest)

respond(HttpResponse)

Application Logic

verify(HttpHeader)

request(HttpRequest)

respond(HttpResponse)

request(DBRequest)

respond(DBResponse)

log(Message)

Database

request(DBRequest)

respond(DBResponse)

Logging Service

log(Message)

Figure 3.2: Diagram of a web application built using reactive components

To demonstrate the utility of component interfaces and explicit support for property-preserving

composition, we now present an illustrative design for a web application using reactive com-

ponents, as is shown in Figure 3.2. The web application consists of five reactive compo-

nents. The first is an unnamed top-level component representing the complete application.

This component has four sub-components representing a web server, the application logic,

a database, and a logging service. The ports of the application logic component have been

bound to the corresponding ports in the web server, database, and logging service compo-

nents. The interface of a component, which consists of its ports, provides insight into the

behavior of the component. For example, based on the interface of the web server component

we may expect it to 1) verify incoming HTTP requests2, 2) pass on valid HTTP requests to

the application, and 3) accept HTTP responses from the application.

Figure 3.2 also demonstrates how reactive programs can be constructed by composing re-

active components, so that a developer may focus on the application logic and use existing

components for the web server, database, and logging service. Furthermore, one can imagine

developing three stateless components surrounding the application logic that do nothing but

translate messages between application specific message types and the generic types required

by the web server, database, and logging service. The application logic, then, is completely

2A production web server may verify that the requested HTTP method can be applied to the given URI,

that content length limits are respected, that content types are supported, etc.

22

isolated from the surrounding libraries and may be tested by providing mock components

for the web server, database, and logging service. The application logic itself has a well-

defined interface and could be reused, say, by implementing a graphical front-end to drive

the application instead of a web service.

3.1.1 State Variables

Part of the internal core of a reactive component is a set of state variables, which are

the subject of the propositions that demonstrate the behavior of the system. The state

variables are manipulated by the assignment statements that constitute the transitions. As

in other formal models, the types of the state variables may be selected to make writing

proofs easier. However, implementations of the reactive component model must provide a

concrete type system that allows the state variables to be realized on a given machine. For

example, the rcgo language for reactive components presented in Chapter 4 of this dissertation

uses the type system of Go to define the types of state variables. The type of a state

variable also may be a reactive component type, which facilitates recursive encapsulation.

For modeling purposes, state variables typically have value semantics to avoid reasoning

about references and aliasing. However, and as a practical concession, we will introduce

pointers for building arbitrary linked data structures (since we advocate an imperative state-

based implementation) and discuss issues raised by introducing pointers into the reactive

component model in Chapter 4.

3.1.2 Atomic State Transitions

The rest of the internal core of a reactive component is a set of atomic state transitions

that manipulate the state variables. A precise definition of the atomicity of state transitions

will be deferred to the subsequent sections on composition (Section 3.1.3) and execution

(Section 3.1.5). State variables and state transitions are private, meaning that transitions

can only refer to the state variables of the associated reactive component and a transition

in one reactive component can only be linked to a transition in another component through

the composition mechanisms. Thus, all initialization and updates to state variables can be

determined by examining the transitions of the corresponding component. The encapsulation

23

of state variables contribute to composition being compositional. All properties established

from the transitions of a component will continue to hold as the component participates

in composition since the set of transitions that affect the state variables is fixed. State

transitions must be deterministic meaning that the next value of every state variable is

uniquely and well defined. State transitions defined by a sequence of simple assignments are

implicitly deterministic. However, special care must be take to ensure that state transitions

are deterministic when described using parallel assignment statements as the same variable

may appear on the left-hand-side and be assigned two different values [20]. As described in

Sections 3.1.3 and 3.1.5, composition links transitions using parallel assignment which creates

an opportunity for non-deterministic state transitions. The problem of non-deterministic

state transitions arising from composition is explored in Section 3.3.

The reactive component model presented in this chapter does not prescribe a specific lan-

guage for encoding state transitions. The language used depends on the goals and tastes of

the one developing or analyzing the model. For example, expressing transitions using the

programming language of UNITY [20] may allow the modeler to extract proofs from the text,

a major goal of UNITY. The approach used by I/O Automata [64] is to specify the condition

established by each transition. As with state variables, we present a language that uses the

statements and expressions of the Go programming language to encode state transitions in

Chapter 4. This furthers our goal of making reactive components approachable by a general

software engineering audience.

3.1.3 Actions, Reactions, Push Ports, Bindings, and Composition

A state transition is either part of an action or a reaction. An action is a state transition

whose execution is under the control of the component to which it belongs. The action is

guarded by a precondition that is guaranteed to be true the instant before the action is

executed. The precondition is a Boolean expression that determines if the action is enabled

or disabled. If the precondition is absent, it is assumed to be true.

A reaction is a state transition whose execution is under the control of another action or re-

action. Thus, we require a mechanism for linking a reaction to an action or another reaction.

To do this, we introduce the notion of a push port. A push port is a typed interaction point

24

consisting of an active side that conditionally activates the port and provides arguments to

the port, and a passive side that reacts to the port and may access the arguments provided

by the active side. A reaction, therefore, is the combination of a passive push port and a

state transition.

A binding is a declaration that associates an active push port in one component with a

reaction in another component. The transition associated with the reaction is executed

atomically with the transition that activates the active push port. Composition in the

reactive component model is achieved by declaring sub-components (recursive encapsulation)

and linking transitions via binding.

3.1.4 Transactions

A transaction is a compound and concrete state transition formed by expanding the acti-

vations in an instance/action pair, subject to the bindings in a system. The instance and

action that define a transaction are called the root of the transaction. A transaction is en-

abled/disabled if its root action is enabled/disabled. Given the root instance and action,

we may enumerate the active push ports that may be activated by the transition of the

action. Note that the activation of a push port is conditional, being under the control of the

transition. The push ports, in turn, activate reactions in particular component instances.

The transitions associated with the reactions may activate other push ports and so on. This

analysis can be repeated to discover all of the reactions that are linked to the root action.

The result is a transaction graph which is a directed acyclic graph G = (N,E). Each node

n ∈ N is a pair (i, x) where i is a component instance and x is either an action, reaction,

activation, or push port. Each edge e ∈ E corresponds to a causal relationship between an

action/reaction and an activation, an activation and a push port, or a push port and a reac-

tion. The edges between actions/reactions and activations indicate that the action/reaction

may execute the activation, as they may be conditionally executed. The edges between

activations and push ports and between push ports and reactions indicate that the implied

push port or reaction will be executed if the upstream activation is executed.

25

3.1.5 Execution

We adopt the common practice of modeling concurrency with non-deterministically executed

atomic actions as is done in UNITY [20], I/O Automata [64], and the Actor Model [8].

The execution of transactions is performed by a scheduler. The scheduler executes one

transaction at a time, thus, each transaction is atomic with respect to all other transactions.

A transaction is enabled if its precondition is true. When executing a transaction, the

scheduler first evaluates the precondition and then executes the body of the transaction if

the transaction is enabled. Thus, executing an enabled transaction may result in a state

change while executing a disabled transaction never causes a state change. The scheduler

is fair meaning that each transaction is executed an infinite number of times. The system

may reach a fixed point where all transactions are disabled. The order in which transactions

are executed is not determined, thus, execution is non-deterministic.

We divide a state transition into two phases called the immutable phase and the mutable

phase. Logically, a transition assigns values to a set of state variables. This can be modeled

as a parallel assignment statement with a left-hand side (LHS) consisting of a list of state

variables and a right-hand side (RHS) consisting of a list of expressions that provide the

next value for each corresponding state variable. The immutable phase corresponds to the

computation of the RHS in a state transition. The mutable phase corresponds to the update

of the values on the LHS with the values on the RHS. When transitions are linked with

composition, we must relate the mutable and immutable phase in one state transition to

the mutable and immutable phases of the other transitions in the transaction. Let A be a

transition (action) and R be a transition (reaction) that is activated by A. Let AI be the

immutable phase of A, AM be the mutable phase of A, RI be the immutable phase of R, and

RM be the mutable phase of R. For the sake of argument, assume that AI reads variables

that are written in RM and that RI reads variables that are written in AM . We require that

AI be evaluated before AM , RI be evaluated before RM , and AI be evaluated before RI since

activation is conditional. This leaves three possible sequences:

• AIAMRIRM . In this sequence, a variable is first updated in AM and then the updated

value is read in RI . The issue with this interpretation is that it does not compose

well. Ideally, we would like to be able to rewrite the transition as a single transition

consisting of a single immutable phase and mutable phase.

26

• AIRIAMRM and AIRIRMAM . These sequences resolve the issue with the first se-

quence by providing a clear immutable phase (AIRI) and mutable phase (AMRM and

RMAM).

Thus, with respect to transactions, all immutable phases (which includes all push port

activations) are performed before all mutable phases.

3.2 Example: Clock System

To illustrate the behavior of reactive components under this model, we rewrite the Clock

automaton example in [64] using reactive components. The Clock automaton consists of a

free-running counter and flag used to implement a request-response protocol. Our Clock

component is defined in Figure 3.3. The state variables are identified with var and their

initial values are provided. The component contains a reaction named request for receiving

requests to sample the current value of the counter. The component also contains an active

push port named clock for communicating the sampled value of the counter. The Clock

action is conditioned on the flag variable (which indicates that a request has been made)

which when it executes resets the flag and communicates the value of counter by activating

the clock port. The Tick action increments the free-running counter. The absence of a

precondition means this action is always enabled. A simple client for the Clock component

that perpetually requests the current count is shown in Figure 3.4.

In isolation, a Clock component will increment its counter forever and a Client component

will make a request and then stop. In order to make the two components work together,

we must compose them. Figure 3.5 shows a System component that instantiates a Clock

component and a Client component and binds the corresponding push ports in each instance.

In the composed system, the client’s Request action will be executed activating the request

port which in turn causes the request reaction in the clock to be executed. Figure 3.6 shows

the transaction graph for the Request action. Eventually, the clock’s Response action will be

executed activating the clock port which in turn causes the clock reaction in the client to be

executed with the current value of the clock’s counter. Figure 3.7 shows the transaction graph

27

component Clock {

var int counter (0)

var bool flag (false)

push clock(int t)

reaction request() flag := true

Clock: flag -> flag := false activates clock(counter)

Tick: counter := counter + 1

}

Figure 3.3: Definition of the Clock component of the Clock System

component Client {

var bool flag (false)

push request()

Request: !flag -> flag := true activates request()

reaction clock(int t) flag := false || /* do something with t */

}

Figure 3.4: Definition of the Client of the Clock System

28

component System {

var Clock clock

var Client client

bind {

client.request -> clock.request

clock.clock -> client.clock

}

}

Figure 3.5: Definition of the System component of the Clock System

client.Request

client.(activation
in Request)

client.request

clock.request

Figure 3.6: Transaction diagram for the client.Request action of the Clock System

for the Clock action. In between these actions, the Tick action of the clock is incrementing

the counter.

3.3 Properties of Composition

In this section, we examine various features related to reactive components and composition.

Substitutional equivalence for reactive components is demonstrated by outlining a procedure

for in-lining sub-components. Hazards of composition, namely, non-deterministic state tran-

sitions resulting from conflicting and recursive composition, are identified and a means of

detecting them is proposed. The issue of decomposition is considered and pull ports are

introduced as a mechanism for decomposition.

29

clock.Clock

clock.(activation
in Clock)

clock.clock

client.clock

Figure 3.7: Transaction diagram for the clock.Clock action of the Clock System

component System {

/* Substitution of clock component. */

var int clock_counter (0)

var bool clock_flag (false)

push clock_clock(int t)

reaction clock_request() clock_flag := true

clock_Clock: clock_flag -> clock_flag := false activates clock_clock(clock_counter)

clock_Tick: clock_counter := clock_counter + 1

/* Substitution of client component. */

var bool client_flag (false)

push client_request()

client_Request: !client_flag -> client_flag := true activates client_request()

reaction client_clock(int t) client_flag := false || /* do something with t */

bind {

client_request -> clock_request

clock_clock -> client_clock

}

}

Figure 3.8: Substitution of state variables, ports, actions, and reactions for the sub-
components of the System component of the Clock System

30

component System {

var int clock_counter (0)

var bool clock_flag (false)

var bool client_flag (false)

push clock_clock(int t)

push client_request()

clock_Clock: clock_flag -> clock_flag, client_flag :=

false, false activates clock_clock(clock_counter) ||

/* do something with clock_counter */

client_Request: !client_flag -> client_flag, clock_flag :=

true, true activates client_request()

clock_Tick: clock_counter := clock_counter + 1

}

Figure 3.9: Simplifications of ports, bindings, and transitions in the expanded System com-
ponent of the Clock System

3.3.1 Substitutional Equivalence

For reactive components, substitutional equivalence means that a sub-component can be

replaced with its definition and the result is a well-defined entity in the model. To this

end, a procedure for substituting the definition of a sub-component involves 1) renaming

and adding all state variables, ports, actions, and reactions to the parent component and

2) simplifying bindings by substituting the transitions associated with a reaction into the

action or reaction that activates the reaction in question.

To illustrate, Figure 3.8 shows the result of substituting state variables, ports, actions, and

reactions into the System component of Figure 3.5. Identifiers in the sub-components have

been prefixed with the name of the sub-component instance to avoid name clashes. For exam-

ple, the request reaction in the clock sub-component has been renamed to clock_request.

Figure 3.9 shows the result of simplifying bindings and state transitions. Note that the push

ports have been retained for subsequent composition, i.e., the System component may be a

component in a larger system. The result is a reactive component whose “size” in terms of

state variables, actions, and reactions is the sum of the sizes of its constituent components.

31

A.set

A.(activation
in set)

A.setPush1

B.setTrue

A.setPush2

B.setFalse

Figure 3.10: Transaction diagram for a non-deterministic transaction

Substituting the definition of the Clock component and Client components into the System

component confirms the intuition that the flag variable in the client and flag variable in the

clock are the same since 1) initially they have the same value and 2) they take on the same

value in every state transition.

3.3.2 Determinism and Composition

The result of composing two well-defined reactive components may yield a system that is non-

deterministic. The two “hazards” that must be avoided are non-deterministic assignment

to state variables and recursively activated reactions. Non-deterministic assignment results

when the next value for a state variable is not well defined due to the inclusion of two or more

transitions in a transaction that operate on the state variable. To illustrate, consider the

transaction depicted in Figure 3.10. The set action of component A has a single activation

that activates both the setPush1 and setPush2 push ports. The setPush1 port is bound

to the setTrue reaction of component B while the setPush2 port is bound to the setFalse

reaction of the same component B. Suppose that the setTrue reaction sets a flag to true

while the setFalse reaction sets the same flag to false. The transaction is non-deterministic

because the value of the flag after the (A,set) transaction may either be true or false. An

offending pair of transitions may appear anywhere in a transaction graph given that arbitrary

transaction graphs may be constructed through composition. If the underlying language

used to define transitions admits pointers, dynamic memory, if statements, and loops (i.e.,

is Turing-complete), then the problem of determining if two transitions operate on the same

state variable is undecidable in general [59, 80]. For a transaction graph G, instances i1

32

and i2, and actions/reactions t1 and t2, a necessary (but not sufficient) condition for non-

deterministic assignment NDA from composition is NDA(G) : ∃(i1, t1), (i2, t2) ∈ G.N, i1 =

i2, t1 6= t2 which says that the transaction must contain two different transitions involving

the same component instance.

A recursively activated transition occurs when the transaction graph has a cycle. The ex-

ecution of such a transaction may result in well-defined next values for all state variables

assuming that 1) the recursion is bounded and 2) the parameters passed to every reaction

result in identical computations. A transaction may be analyzed like a traditional transfor-

mational program since it has finite input, a finite output, and should terminate. The first

problem, then, is a thinly disguised version of the halting problem since it asks if a compu-

tation (the transaction) expressed in a Turing-complete language terminates (has bounded

recursion) [95, 30]. A bounded recursion means that the execution of the transaction will

generate a bounded number of activations A. For each activation a ∈ A, we must determine

what state is updated by a. If the language is Turing-complete, then this problem is unde-

cidable in general [59, 80]. For state variables that are updated by more than one activation,

we must then show that each activation sets the state variable to the exact same next state.

If we treat each activation as a program, then we require a function that determines if two

(arbitrary) programs compute the same function, which is again, undecidable in general [82].

The difficulty of detecting composition that results in non-deterministic assignments suggests

that these problems are best checked by a machine. That is, an implementation of reactive

components may prevent non-deterministic assignment by checking that NDA(G) is false for

all transaction graphs in the system. Similarly, an implementation may check for recursive

activation by checking for cycles in transaction graphs. Both of these approaches are used

by the implementation described in Section 5.2.

3.3.3 Decomposition, Getters, and Pull Ports

Substitutional equivalence implies that the process of substituting the definition of a sub-

component into a parent component may be reversed and that sub-components may be

“factored out” of an existing component, e.g., for reuse with other components.

33

Another motivation for decomposition is potentially increased performance through paral-

lelism. Recall that true concurrency in reactive components is modeled as the serial and

non-deterministic execution of atomic actions. Two transactions can be safely executed con-

currently if it can be shown that the state variables involved in each transaction are disjoint.

As was previously mentioned, making this determination is undecidable for Turing-complete

languages in the general case. However, the problem becomes decidable if the component

instance is used as a proxy for its constituent state variables. Let rw : t→ {Read ,Write} be

a function that maps a transition to a value indicating that variables are read-only during

the transition or written in some way. Two instance/transition pairs are independent (indp)

if either the instances are different or at most one of the transitions writes to the variables

of the instance:

indp((i1, t1), (i2, t2)) : i1 6= i2 ∨ ¬(rw(t1) = Write ∧ rw(t2) = Write) (3.1)

Two transaction graphs are independent if all of their nodes are independent indp(G1, G2) =

∀(i1, t1) ∈ G1.N, (i2, t2) ∈ G2.N indp((i1, t1), (i2, t2)). The significance of the preceding

analysis is that the determination about what actions can be executed concurrently becomes

machine checkable due to the strong guarantee that state variables belonging to an instance

can only be modified by the transitions of that instance.

To illustrate the mechanisms required for decomposition, we will factor out a Counter com-

ponent from the Clock component of Figure 3.3 and then rewrite the Clock component

using the Counter component. Upon inspection, the Tick action and request reaction can

be executed concurrently since the state variables involved in each transition are disjoint.

Figure 3.11 shows the Counter component which consists of a counter state variable. The

Tick action can be moved to the Counter component without complication. The Clock

action of the Clock component reads the value of counter which suggests that a mechanism

for accessing the state variables in a component is required. Thus, we introduce the notion

of a getter method which can be called on a component to produce a value that may be de-

rived from its state variables. In the Counter component, the getCounter getter returns the

current value of the counter. A getter is not allowed to modify the state of a component and

may only be invoked in the immutable phase. These semantics preserve the strict separation

of immutable phase and mutable phase. When analyzing composition, a getter is treated like

34

component Counter {

var int counter (0)

Tick: counter := counter + 1

getCounter() int {

return counter

}

}

Figure 3.11: Definition of the Counter component of the Factored Clock System

component Clock {

var Counter c

var bool flag (false)

push clock(int t)

reaction request() flag := true

Clock: flag -> flag := false activates clock(c.getCounter())

}

Figure 3.12: Definition of the Clock component of the Factored Clock System

a transition that reads the state variable of the corresponding instance. Figure 3.12 shows

the Clock component rewritten to use a Counter sub-component and a getter.

The logic associated with the flag state variable represents a generic request-response pro-

tocol except for the call to c.getCounter(). To indirect the call to c.getCounter() we

introduce the notion of a pull port. A pull port represents an external value dependency. A

component can demand a value from the pull port in the immutable phase. Like push ports,

pull ports have an active and passive side. The active side represents the caller and the

passive side represents the callee. Getters are sufficient to realize the passive side of a pull

port. Every active pull port must be bound to exactly one passive pull port via composition.

Figure 3.13 shows a component that implements the request-response protocol using a pull

port getValue. Figure 3.14 shows the Clock component written in terms of the Counter and

RequestResponse components. An export directive allows reactions, getters, and ports in

sub-components to be available in the interface of the encapsulating component.

35

component RequestResponse {

var bool flag (false)

pull getValue() int

push response(int t)

reaction request() flag := true

Response: flag -> flag := false activates response(getValue())

}

Figure 3.13: Definition of the RequestResponse component of the Factored Clock System

component Clock {

var Counter c

var RequestResponse rr

bind {

c.getCounter -> rr.getValue

}

export rr.request as request

export rr.response as clock

}

Figure 3.14: Definition of the Clock component of the Factored Clock System (fully-factored)

36

Pull ports are subject to a hazard of composition similar to the recursive activation hazard

of push ports. A cycle in the graph of composed pull ports is equivalent to a recursively

defined function. The recursion may be bounded but this is undecidable in the general case.

Consequently, an implementation may reject recursively defined getters and pull ports.

3.4 Summary

In this chapter, we have presented the reactive component model for reactive programs. A

reactive component consists of a set of state variables and transitions that are private to

the component. The interface of a reactive component consists of push ports and reactions,

which allow a component to trigger a transition in another component, and pull ports and

getters, which allow a component to access the state of another component. The external

or visible behavior of a reactive component can be traced through its interface, specifically

its push ports. The internal details of a component can often be abstracted away to permit

reasoning about the behavior of a composed system at various levels of detail. Composition

is achieved through recursive encapsulation (sub-components) and explicit port binding and

satisfies the requirements for principled composition set forth in Section 1.4. As demon-

strated in Section 3.3.1, the definitions of sub-components can be substituted into the con-

taining component resulting in an equivalent system (substitutional equivalence). Similarly,

sub-components may be “factored out” by using pull ports and getters to safely access the

state of the sub-components.

The private nature of state variables and transitions causes properties established from the

text of a component to be preserved through composition. Composition links transitions

to form an atomic transaction that allows the properties of one component to be related

to another component. When the sub-components of a component are protected from fur-

ther composition, the properties derived from their interactions are preserved as the parent

component is composed. Property-preserving composition is essential for reasoning about

systems in a hierarchical and/or modular fashion.

The result of composing reactive components is either well-defined due to the atomic na-

ture of transactions or illegal due to the composition hazards of recursive transactions and

non-deterministic state transitions. Analysis of these hazards at the state variable level is

37

impossible due to the undecidable nature of their sub-problems. This suggests that im-

plementations may restrict composition to prevent the conditions necessary for recursive

transactions and non-deterministic state transitions. The main concession is allowing a

component instance to proxy for its state variables. The problem of detecting recursive

transactions, then, can be posed as the problem of detecting cycles in a directed graph.

Similarly, the problem of detecting potentially non-deterministic state transitions is reduced

to a set membership problem. Valid systems that fail the check for non-deterministic state

transitions using component instance proxies can be refactored by decomposing the offending

components.

38

Chapter 4

The rcgo Programming Language

In theory, there is no difference between theory and practice. But, in practice,
there is. Anonymous

In this chapter, we present rcgo, a novel extension to the Go programming language, designed

for reactive components. We state the motivation for the rcgo language, our assumptions

for tractability, and the features that guided our design. We then explain how reactive

components are expressed in the language and we conclude with illustrative examples.

4.1 Challenges

An implementation of the reactive component model presented in Chapter 3 is necessary

for at least two reasons. First and foremost, an implementation tests the practicality of the

model. The act of implementing the model can help to evaluate whether the assumptions

upon which the model is founded can be realized using existing techniques. Conversely,

an implementation can suggest restrictions to the model that are necessary to produce an

effective implementation. An example of this was seen in Section 3.3 where a component

instance was used as a proxy for its state variables, for the purpose of determining which

variables were involved in a transaction. Implementation forces one to supply and consider

details that can either qualify or disqualify a model as a practical engineering tool. This is

consistent with the emerging attitude in systems research that all new ideas and techniques

must be accompanied by relevant tools and evaluations to show their feasibility [58].

39

Second, an implementation is necessary to demonstrate that the model can be applied suc-

cessfully to real-world design and implementation problems. That is, given a platform for

reactive components, we can design, construct, and evaluate systems based on the reactive

component paradigm. Furthermore, we can evaluate critically the design and implementation

processes that the model and platform encourage. By comparing implementations of similar

systems in different models, we also can gain insight into the strengths and weaknesses of

each model. These ideas will be explored further in Chapter 5.

4.2 Constraints

Our implementation of the reactive component model is shaped by a number of practical

concerns. First, the implementation must enforce the semantics of the model to avoid subtle

errors caused by reasoning about a system using one set of semantics and implementing it

using another set of semantics. Second, the implementation must permit the use of linked

data structures as they are fundamental to the efficient implementation of many algorithms.

Third, the implementation must support reference and move semantics for efficient commu-

nication.

Strict enforcement of the reactive component model. To enforce the semantics of

reactive components, the checks of interest are 1) the separation of the immutable and muta-

ble phase (Section 3.1.5), 2) the binding of pull ports (Section 3.3.3), and 3) the detection of

non-deterministic state transitions arising from composition (Section 3.3.2). Not performing

these checks is unacceptable due to the subtlety associated with developing correct reactive

programs: the semantics of reactive components would be enforced only through convention

which is easily violated. Similarly, placing the burden on developers is unacceptable due to

the amount of detail that must be considered. Thus, the implementation must enforce the

semantics of reactive components through adequate checking.

Support for reference semantics and linked data structures. Formal models for

reactive systems typically use logic friendly data-types, i.e., those that do not introduce

40

aliasing, to make proofs easier. However, reference semantics and the linked data struc-

tures they make possible are a critical part of modern software engineering. As two of our

objectives are practicality and utility, our language for reactive components must support

reference semantics and linked data structures. The potential hazard created by reference

semantics is that the state of one component becomes accessible in another component. This

means that the state of a component may not be solely under the control of the transitions

for that component. Consequently, the properties associated with that component could be

violated by the other components manipulating that state. Furthermore, an implementation

that chooses to execute seemingly independent transactions concurrently may cause data

corruption since the concurrent transactions may manipulate the same state in an uncoor-

dinated fashion. Thus, our implementation of reactive components must take special care

to preserve isolation of state among reactive components when supporting references and

linked data structures.

Efficient inter-component communication. Linked data structures also create an op-

portunity for efficient communication between components. There are three modes by which

a component (sender) can share information with another component (receiver) as they in-

teract through push ports and pull ports. First, the sender may use value semantics where

it provides complete copies of the values to be communicated. This approach is reasonable

for values like numbers and small records. Second, a sender may use reference semantics

where it provides a pointer (reference) to the data to be communicated. This approach is

reasonable when the sender offers up a large data structure. The receiver is responsible for

copying any data that needs to be retained. When using such reference semantics, receivers

may read and copy the data structure represented by the pointer but may not alter or per-

sistently remember the original data structure in any way. Third, a sender may use move

semantics where it provides a pointer to a data structure that the receiver may adopt as

its own. In this case, the sender promises to “forget” the data structure as the receiver is

the new owner of the data structure. Move semantics are appropriate when the size of the

data to be communicated is large, there is a single receiver, and the sender does not need to

retain the data. These conditions may arise, for example, in situations involving networking

stacks and pipelines. Without move semantics, the practicality of the reactive component

model is greatly diminished.

41

4.3 Approach

Our approach to implementing the reactive component model defined in Chapter 3 is to

provide a programming language that facilitates the direct expression of reactive compo-

nents. Language support for the model is beneficial because it closes the semantic gap

between reasoning and implementation. The importance of language support can be seen in

techniques like structured programming [29] and object-oriented programming [17]. While

these techniques can be applied in virtually any setting, their lasting utility is derived from

their implementation in a variety of programming languages. Providing language support

for reactive components raises the level of abstraction and allows reasoning about a system

consisting of them directly from its specification, instead of reasoning in one set of semantics

while implementing in another which can be tedious and error-prone.

Language support allows developers to rely on the consistent application of the semantics of

the model through strict enforcement. Designing language support specifically for reactive

components creates an opportunity to introduce syntax and semantics that allow a compiler

or interpreter to distinguish programs that conform to the semantics of reactive components

from those that potentially may not. To illustrate, consider the problem of ensuring that

the state of a component does not change during the immutable phase of a transition. We

observe that an action/reaction is similar to a method. Based on this observation, checking

the immutability of a component in the immutable phase should be similar to checking for

const correctness in C++. In C++, the const correctness check is performed early in

the compilation process when the program is represented as an abstract syntax tree (AST)

with full semantic information, as opposed to late in the process where the program is

represented by machine instructions with very limited semantic information. From this, we

observe that such checking is supported by 1) adding features to the language to provide

the necessary semantic information and 2) performing the checks early in the translation

process. An existing language might not provide enough detail to enable the necessary

checks or to achieve them efficiently. Along these same lines, an implementation may have

to make conservative assumptions to enforce the semantics of reactive components. As was

seen in Section 3.3, allowing a component instance to serve as a proxy for all of its state

variables allows the check for non-deterministic state transitions to be implemented using

known techniques.

42

4.4 Preliminaries

Our approach to programming language support for reactive components is to start with

an existing language, Go [2], remove features that interfere with the semantics of reactive

components, and then introduce syntax and semantics for reactive components. Go is an

imperative programming language with a straightforward type system and expressions and

statements resembling C. Go supports methods but places no emphasis on an inheritance

hierarchy. In the same vein, Go does not have constructors, destructors, function overloading,

or operator overloading. This combination makes Go an attractive foundation for a language

for reactive components since it is tractable in implementation and approachable by a general

audience. We defer to Go’s syntax and semantics for our definitions of types, declarations,

statements, and expressions. We will not discuss the syntax and semantics of Go except

when they interact with those of reactive components. Our implementation of Go’s types,

declarations, statements, and expressions also is intentionally only as broad as is needed to

demonstrate the contributions of this dissertation.

In rcgo, actions, reactions, getters, initializers, and bindings are expressed using Go’s syntax

for methods. Component types are constructed using the syntax of structs. Push ports and

pull ports are fields of a component. To enforce the immutable phase and facilitate checks

for reference semantics, we introduce syntax that prevents the abuse of pointers. Activations

in the model correspond to activate statements which activate push ports and contain the

mutable phase of a state transitions. Move semantics are realized through a new transferable

heap type and associated operations. The main features that we remove from Go are go

routines, i.e., threads, and channels which are used for CSP-style communication.

Designing a programming language for reactive components using a different foundation

language (or set of foundation languages) would require a different approach and may yield

different results. For example, memory management in Go is based on garbage collection

which is consistent with allowing reference semantics while isolating component state. In

contrast, adopting a language based on manual memory management like C and C++ will

require a reconsideration as to if/how such isolation may be achieved.

43

Static system assumption. To make implementation more tractable, we will assume that

the systems to be implemented have a static topology, meaning that all reactive components

are statically defined. Both finite state and infinite state (subject to system resource limits)

reactive components are permitted, but both the number and configurations of reactive

components in a system are fixed. This is roughly equivalent to systems that assume a

fixed number of actors or threads. These assumptions are common in embedded and real-

time systems due to the combination of limited resources and a need for predictability.

These assumptions also are common in many other less constrained environments, as the

number of threads is often fixed by the design, e.g., only a fixed number of concurrent

activities is needed, or the number of threads is limited by the number of available physical

cores [99]. Thus, even with the static system assumption, an implementation of the model

is still applicable to many systems of interest. We leave the implementation of extensions

that facilitate the dynamic creation and binding of reactive components for future work.

44

Constant

Segment
Stack 1

Stack 2

...

Stack S

Component 1

Component 2

...

Component C

Heap 1

Transferable

Heap 1

Transferable

Heap 2

...

Transferable

Heap H

Transferable

Heap H.1

Transferable

Heap H.2

Figure 4.1: Memory model for the rcgo run-time system. An edge from one segment to

another indicates that a pointer in one segment (source) may refer to a location in another

segment (target). Any pointer may refer to a location in the constant segment (these edges

are not shown).

Memory model. Figure 4.1 illustrates the memory model for rcgo. A pointer may refer to

a location in the constant segment, a stack segment, a component segment, a heap segment,

or a transferable heap segment. The edges in the figure indicate that a pointer in one segment

may refer to a location in another segment. As implied by the name, the constant segment

is used to store constants like string literals. A pointer in any segment may refer to the

constant segment (these edges are not shown shown in the figure).

Function parameters and local variables are allocated on a call stack as they are in C or

C++. Multiple stacks may be present if multiple transactions are executed concurrently. As

indicated by the figure, a pointer in a stack segment may refer to a component segment, a

45

heap segment, a transferable heap segment, or the constant segment. A pointer referring to a

location on a call stack becomes invalid after the corresponding transaction is complete and

the call stack is cleared. Consequently, it is not safe to allow static or dynamic component

state to refer to a location in a stack as it may create a dangling pointer. Escape analysis [74]

can be used to determine if an object should be dynamically allocated to avoid this problem.

It is permissible to allow a pointer in a stack to refer to a location in the same stack.

As shown in Figure 4.1, the other three types of segments are component segments, heap

segments, and transferable heap segments. A component segment contains the statically al-

located state of a component while a heap segment contains the dynamically allocated state.

A transferable heap segment is a dynamically allocated and self-contained group of objects

that can be used to extend the state of a component and make such state transferable. The

semantics of reactive components require the state of each component to remain disjoint. A

pointer in a component segment may only refer to 1) a location in the constant segment, 2) a

location in the same component segment, 3) a location in the corresponding heap segment,

or 4) a transferable heap segment. Similarly, a pointer in a heap segment may only refer to

1) a location in the constant segment, 2) a location in the same heap segment, 3) a location

in the corresponding component segment, or 4) a transferable heap segment. A pointer in a

transferable heap segment may only refer to 1) a location in the constant segment, 2) a loca-

tion in the same transferable heap segment, or 3) another transferable heap segment. Part of

our approach to maintaining disjoint state is preventing the formation of arbitrary pointers

that would allow one component to access the state of another component. Consequently,

pointer arithmetic and casts from numeric values are not allowed. Manually deallocating

memory may result in dangling pointers which, as memory is recycled, may point to the

state of another component. Consequently, some form of automatic memory management is

necessary with the two primary candidates being reference counting and garbage collection.

Our implementation uses garbage collection and is described in Section 5.4. The component

segments, heap segments, and transferable heap segments contain all of the mutable state

in the system. Mutable state outside of a component, e.g., a global variable, is prohibited

as it may introduce a data race.

46

4.5 Syntax and Semantics

This section describes the syntax and semantics of rcgo. Many concepts, e.g., components,

ports, actions, and reactions, have a natural mapping into the Go language as types and

method-like constructs. A major divergence from Go is the introduction of attributes that

change the mutability of variables, as this was necessary to maintain the isolation between

components while supporting reference semantics. The separation between the immutable

phase and mutable phase is accomplished via an activate statement that contains a con-

tinuation to be executed in the mutable phase. To support move semantics, we introduce

a new type called a transferable heap which allows one component to safely transfer a col-

lection of objects to another component. In the following presentation, we use the following

convention:

• keywords appear in lowercase, e.g., type

• identifiers and literals appear in uppercase and underscores, e.g., ID

• non-terminals appear in camel-case, e.g., FieldList

Components. A reactive component resembles a struct in Go since it is a group of named

state variables. A component, then, is defined with the following syntax:

type ID component { FieldList };

For example,

type Clock component {

flag bool;

counter uint;

};

introduces a type named Clock that is a reactive component with two fields (state variables).

The type of a field may be another component type to support recursive encapsulation.

47

Receivers. A method in Go has one of the following two forms:

func (ID TYPE_ID) METHOD_ID Signature Body

func (ID *TYPE_ID) METHOD_ID Signature Body

The first form operates on a copy of a value of type TYPE_ID. The second form operates

on a pointer to a value of type TYPE_ID. The parameter ID names the receiver of the

method and performs the same function as the this keyword in C++ and Java. The syntax

(ID TYPE_ID) is called a receiver and the syntax (ID *TYPE_ID) is called a pointer receiver.

Actions, reactions, getters, and initializers use a pointer receiver.

Intrinsic and indirection mutability. Variables and parameters are declared with both

an intrinsic mutability and a indirection mutability. Intrinsic mutability limits the operations

that can be performed on the lvalue of the variable or parameter while indirection mutability

limits the operations that can be performed on lvalues derived from the rvalue of the variable

or parameter. By default, variables and parameters have mutable intrinsic and indirection

mutability. The following code is legal and sets z to 6.

var x uint = 3;

var y *uint = &x;

var z = x + *y;

Declaring a variable or parameter to have immutable intrinsic mutability (const) prevents

the variable or parameter from being changed after it is initialized. The following code is

illegal:

var x const uint = 3;

x = 4; // Illegal

Immutable intrinsic mutability is enforced when taking the address of a variable or parameter:

var x const uint = 3;

48

var y *uint = &x; // Illegal

var z $const *uint = &x; // Legal

var a uint = *z; // Legal

*z = 5; // Illegal

The second line is illegal because x could change through a statement like *y = 5;. The

third line causes z to have immutable indirection mutability ($const). The expression *z

can serve as an rvalue (line 4) but it cannot serve as an lvalue (line 5).

Indirection mutability is “sticky.” For example:

var x $const **uint = ...;

var y $const *uint = *x; // Legal

var z *uint = *x; // Illegal

The second line honors the guarantee that all of the memory accessible through x is im-

mutable. Indirection mutability is checked in assignments and calls. Indirection mutability

affects types from which lvalues can be derived, namely, pointers and slices3. Immutable

indirection mutability is one of the techniques that is used to enforce the immutable phase

of state transitions.

The second kind of mutability is called foreign mutability. Foreign mutability is like im-

mutable mutability with the added condition that an address with foreign mutability cannot

be stored in a component segment, heap segment, or transferable heap segment. The pri-

mary application of foreign mutability is to support reference semantics for communication

while enforcing the isolation of heaps.

var x $foreign *uint = ...;

var y **uint = new (*uint);

*x = 3; // Illegal

*y = x; // Illegal

var z $foreign *uint = x; // Legal

3A slice represents a portion of an array and consists of a pointer, a size, and a capacity.

49

The third line of the code fragment above is illegal because the lvalue given by *x is im-

mutable. The fourth line is illegal because it casts away the $foreign attribute of x. (Notice

that declaring y with $foreign would cause the lvalue to be immutable.) The fifth line is le-

gal because the lvalue is mutable and the $foreign attribute is preserved. The consequence

of these semantics is that variables that contain pointers that are declared $foreign may

only be stored in stack segments.

The following checks are applied to assignment statements:

1. The lvalue and rvalue must be type compatible.

2. The lvalue must have mutable intrinsic mutability.

3. If the type involved contains a pointer, check for compatible indirection mutability

(see Table 4.1). Essentially, the indirection mutability of the lvalue must be at least

as “weak” as the indirection mutability of the rvalue. This enforces the “stickiness” of

indirection mutability.

Mutable Immutable Foreign

Mutable Yes No No

Immutable Yes Yes No

Foreign Yes Yes Yes

Table 4.1: Indirection mutability compatibility for assignment. The rows represent the

indirection mutability of the lvalue and the columns represent the indirection mutability of

the rvalue.

A parameter is foreign safe if 1) the type of the parameter does not contain pointers or slices

or 2) the parameter is declared with foreign indirection immutability. A parameter list is

foreign safe if all parameters in the list are foreign safe. A signature (a parameter list and a

return parameter list) is foreign safe if the parameter list and return parameter list are both

foreign safe. Signatures used in inter-component communication, such as push ports and

reactions, must be foreign safe to permit reference semantics while enforcing the isolation of

state between components.

50

Initializers. An initializer is used to initialize the fields of a reactive component. This

allows one to initialize components before the scheduler starts. This is necessary for es-

tablishing invariants as is commonly done in formal models, e.g., the initially section of

UNITY [20]. An initializer has the form:

init (ID *TYPE_ID) INITIALIZER_ID Signature Body

An initializer is similar to a method but has additional semantics:

• An initializer must have a pointer receiver to a component type.

• The signature must be foreign safe.

• An initializer may only be invoked by another initializer.

• An initializer sets the heap segment on entry and resets the heap segment on exit so

that all allocated memory is attributed to the receiver.

Instances. An instance is a top-level component. An instance is declared with the follow-

ing syntax:

instance ID TYPE_ID INITIALIZER_ID (ExpressionList);

For example, instance c Clock Init (); declares as instance named c of type Clock and

will call the initializer Init with an empty list of arguments. The instance identifier must be

unique, the type identifier must refer to a component, and the initializer must be declared

for the component type.

Actions. An action has the form:

action (ID $const *TYPE_ID) ACTION_ID (BooleanExpression) Body

51

The immutable indirection mutability of the receiver enforces the immutable phase of tran-

sitions. Actions may only be defined for component types. The Boolean expression is the

precondition of the action. The receiver variable is in scope for the evaluation of the precon-

dition. The body contains the state transitions associated with the action. Actions set the

heap segment on entry and reset the heap segment on exit so that all allocated memory is

attributed to the receiver.

Reactions. A reaction has the form:

reaction (ID $const *TYPE_ID) REACTION_ID (ParameterList) Body

As with actions, the immutable indirection mutability of the receiver enforces the immutable

phase of transitions. Reactions may only be defined for component types. The name of a

reaction is used when binding to push ports. The parameter list declares the parameters

that are passed to the reaction. The parameter list must be foreign safe. This prevents the

reaction from storing memory addresses from the component that activated the reaction.

The body contains the state transitions associated with the reaction. Reactions set the

heap segment on entry and reset the heap segment on exit so that all allocated memory is

attributed to the receiver.

Push ports. A push port is declared as a field (of a component) with push port type. A

push port type has the form:

push (ParameterList)

The parameter list declares the parameters that are passed to any bound reaction. The

parameter list must be foreign safe. The following example declares a push port named

response in the Clock component:

type Clock component {

...

response push (t uint);

};

52

Getters. A getter, which provides a safe way of obtaining information from a component,

has the form:

getter (ID $const *TYPE_ID) GETTER_ID Signature Body

A getter is similar to a method but has additional semantics:

• A getter must have a pointer receiver to a component type declared with immutable

indirection mutability.

• The signature must be foreign safe.

• A getter may only be invoked by an initializer, another getter, or an action or reaction

in the immutable phase.

• A getter sets the heap on entry and resets the heap on exit so that all allocated memory

is attributed to the receiver.

Pull ports. A pull port is declared as a field (of a component) with pull port type. A pull

port type has the form:

pull (ParameterList) ReturnParameterList

The parameter list declares the parameters that are passed to the bound getter and the

return parameter list declares the return values of the getter. The parameter list and return

parameter list must be foreign safe. Pull ports are called like getters and place the same

restriction on the caller, that is, a pull port may only be invoked by a getter or an action

or reaction in the immutable phase. The following example declares a pull port named

isOutputBufferFull in the Producer component:

type Producer component {

...

isOutputBufferFull pull () bool;

};

53

In this example, the intent of the pull port is to allow a Producer to interrogate the status

of a downstream buffer to implement flow control.

Binders. Binders allow reactions to be associated with push ports and getters to be as-

sociated with pull ports. Binding and recursive encapsulation are the two mechanisms for

composing reactive components. A binder has the form:

bind (ID *TYPE_ID) BIND_ID {

BindStatement

...

}

For example:

bind (this *System) TheBinder {

this.producer.Out -> this.consumer.In;

this.producer.isOutputBufferFull <- this.consumer.isInputBufferFull;

}

The first statement of the example binds the Out push port of the System’s producer to

the In reaction of the System’s consumer4. The second statement of the example binds the

isOutputBufferFull pull port of the System’s producer to the isInputBufferFull getter

of the System’s consumer. The left side of a bind statement always refers to a port while the

right side refers to a getter or reaction. The direction of the arrow indicates the logical flow

of information. Thus, information flows from a push port to a reaction (->) and information

flows from a getter to a pull port (<-). A pull port must be bound to exactly one getter. A

reaction may be bound to at most one push port. Binders are associated with a component

type and evaluated for each instance of that component type.

4The select operator(.) automatically dereferences pointers.

54

Activations. Activations are the mechanism by which transitions extend to other compo-

nents via push port/reaction bindings. Activations also serve as the boundary between the

immutable and mutable phases of a transition. An activate statement has the form:

activate PORT_ID (Arguments) ... {

Statements

};

Activate statements can only occur in the body of an action or a reaction. Assume that the

receiver of the action or reaction is named this5. The expression this.PORT_ID must refer

to a push port and the arguments passed to the push port must agree with its signature.

The list of push ports in an activate statement is optional. When an activate statement is

executed, the named push ports are activated meaning that the reactions bound to those push

ports are executed with the given arguments. These reactions, in turn, may execute other

activate statements. Once all of the actions and reactions in the transaction have activated

their last push ports, they proceed to execute the bodies of the activate statements. Recall

that the receiver this has immutable indirection mutability. Thus, all computation up to

and including the last port activation constitutes the immutable phase of the transaction

since the state of the components is not allowed to change. Within the scope of the body,

the receiver this changes to mutable indirection mutability which then allows the state of a

component to be changed. Thus, the bodies of activate statements form the mutable phase

of the transaction. Parameters and variables declared with foreign indirection mutability

are hidden within the body of an activate statement. This prevents one component from

accessing the state of another component during the mutable phase. Actions and reactions

return, i.e., their flow of control is halted, after the execution of the body of a activate

statement. Activate statements guarded by if statements facilitate conditional activation.

An activate statement may not appear in another activate statement. Our implementation

of activate statements is described in Section 5.3.

Arrays. A homogeneous group of sub-components may be declared using array syntax.

For example,

5this is not a keyword in Go.

55

type System component {

clock [5]Clock;

...

};

declares 5 Clock sub-components. To request the time from each Clock, the System declares

an array of 5 push ports and a dimensioned action:

type System component {

clock [5]Clock;

push [5]request ();

...

};

[5] action (this $const *System) (...) {

...

activate clock[IOTA] {

...

};

}

A dimensioned action is parameterized with an integral constant in the range [0, dimension).

This constant is accessed through the IOTA symbol. A push port in an array is activated by

supplying an index. The index expression must be constant to facilitate the check for sound

composition. Reactions may be dimensioned as well:

[5] reaction (this $const *System) clock (t int) { ... }

A for-loop over an integral range may be used to generate bindings without explicitly listing

each binding. For example:

bind (this *System) {

for i ... 5 {

56

this.request[i] -> this.clock[i].request;

};

}

Transferable heaps. A key requirement for implementing reactive components is that the

state of each component remain disjoint. Foreign indirection mutability allows components

to safely communicate with pointers because it ensures that those pointers are forgotten after

the transaction. For efficient communication, we also desire the ability to transfer a data

structure (a heap) from one component (the sender) to another component (the receiver).

The sender offers the heap to its receivers and one of the receivers may claim the heap. If

the heap is accepted, the sender must forget all references to the heap.

The transferable heap type is so named because it resembles a heap used for dynamic memory

allocation. A heap has a distinguished root that contains the data structure that will be

transferred. A heap is entirely self-contained, that is, any pointer found in the heap may

only point to an address in the heap or another transferable heap segment. This ensures that

the receiver may not access state in the sender after a transfer. Heaps may form hierarchies.

A heap is created with the new operator. For example:

var x *heap int = new (heap int);

creates new heap with an integer root.

A change statement allows one to access the root of the heap. For example:

change (x, y) {

*y = 3;

};

In the example, x is a pointer to a heap and y is a variable that points to the root of the

heap. The root variable is valid for the scope introduced by the change statement. The root

variable will be set to nil if the heap is no longer valid. Within the scope of the change

57

statement, all other variables and parameters that may contain pointers are re-entered with

foreign indirection immutability. This enforces the isolation of heaps by preventing the heap

from storing a pointer that refers to a location in another heap.

Logically, the run-time system maintains a stack of heaps. The top of the stack is called the

active heap and is used to service all memory allocation requests. On entering an action or

reaction, the stack of heaps contains a single heap: the heap associated with the receiver

component. A change statement pushes a new heap on the stack.

A move expression allows a receiver to take ownership of a heap being offered by a sender.

For example:

var z *heap int = move (x);

If x refers to a heap that has already been moved, i.e., claimed by this component or another

component, then the result of the move is a nil pointer. A change statement can be used

to access the data in the heap after a successful move.

A merge expression allows one to merge a heap into the active heap. For example:

var x *uint = merge (z);

A merge expression performs an implicit move, that is, the heap given to merge need not be

owned by the current component. Similarly, a merge will return nil if the heap has already

been claimed.

Operations on heaps, specifically, change, move, and merge are atomic within a transaction.

The reactive component model requires a clear distinction between the mutable phase and

immutable phase and some causality in the immutable phase. However, an implementation

is free to execute immutable phases concurrently and/or mutable phases concurrently. Con-

sequently, different components may be performing heap operations on the same heap at the

same time. Thus, change, move, and merge are atomic with respect to each other. These

operations return nil if they fail. For example, if two components attempt to move the same

heap, one will succeed and the other will fail.

58

4.6 Examples

To demonstrate the features of rcgo, we present two examples. The first example simulates

three users using three processes which communicate using a shared variable. This example

shows all of the major syntactic elements such as component types, initializers, actions,

reactions, getters, push ports, pull ports, binders, activate statements, arrays, and $const.

The second example consists of a system and a channel. The system sends an object to

the channel and then receives the object from the channel. This example demonstrates the

transferable heap type, $foreign, new, change, move, and merge.

4.6.1 Shared Variable System

In this example, we rewrite the shared variable I/O automaton on pages 240 and 242 of [64]

as a reactive component. The example consists of four kinds of components. First, there is

a Variable component which represents a shared variable. Process components access the

shared variable and report the status of the shared variable to User components. A top-level

System component instantiates the shared variable, three processes, and three users to create

a complete system. Figure 4.2 shows the Variable component.

59

type Variable component {

value int;

};

init (this *Variable) Init () {

this.value = -1;

}

[3] reaction (this $const * Variable) Set (v int) {

activate {

this.value = v;

}

}

getter (this $const * Variable) Get () int {

return this.value;

}

Figure 4.2: Code listing for Variable component of the Shared Variable System

60

A Variable component has a single integer state variable named value. This variable is

initialized to the sentinel value -1 in the initializer Init. Notice that the initializer has a

pointer receiver (this *Variable). The receiver this has mutable indirection mutability so

that the state variable can be assigned. The value of the Variable is set in the dimensioned

reaction Set. The reaction has a dimension of three as three Process actions will be bound to

this reaction. The new value for the variable is communicated via the parameter v. Notice

that the receiver for the reaction (this $const * Variable) has immutable indirection

mutability. In the body of the activate statement, the receiver is implicitly converted to

have mutable indirection mutability. The final element of the Variable component is the

getter Get that returns the value of the variable. Since getters are not allowed to change

the state of the component, they must be declared with immutable indirection mutability

(this $const * Variable).

Figures 4.3 and 4.4 shows the Process component. The listing begins by defining the states

for a process, that is, a process is either idle, ready to access the shared variable, ready to

decide, or done. A Process component consists of three state variables: status contains

the state of the process, input contains a value received from the User, and output contains

the value that will be sent to the User. The Process component contains a pull port get_x

that will be bound to the shared variable’s Get getter so that the Process may access the

shared variable. Similarly, the Process component contains a set_x push port that will be

bound to the shared variable’s Set reaction to set the value of the variable. To communicate

with the User, the Process component contains a push port Decide that communicates the

value of the shared variable.

Like the Variable component, the Process component contains an initializer Init that sets

the initial value of the state variables. From the listing, Process components are initialized

to the idle state and the input and output variables are initialized to the sentinel value of -1.

The initr reaction allows a User to asynchronously initialize the Process component. From

the listing, this reaction sets the input variable to the value supplied in the argument v and

causes the Process to prepare to access the shared variable if the Process was previously

idle.

61

type ProcessStatus int;

const PROCESS_IDLE = 0;

const PROCESS_ACCESS = 1;

const PROCESS_DECIDE = 2;

const PROCESS_DONE = 3;

type Process component {

status ProcessStatus;

input int;

output int;

get_x pull () int;

set_x push (v int);

Decide push (v int);

};

init (this *Process) Init () {

this.status = PROCESS_IDLE;

this.input = -1;

this.output = -1;

}

reaction (this $const * Process) initr (v int) {

activate {

this.input = v;

if this.status == PROCESS_IDLE {

this.status = PROCESS_ACCESS;

}

}

}

Figure 4.3: Code listing for Process component of the Shared Variable System (part 1)

62

action (this $const * Process) _access (this.status == PROCESS_ACCESS) {

x := this.get_x ();

if x == -1 {

activate set_x (this.input) {

println (‘x set to ‘, this.input);

this.output = this.input;

this.status = PROCESS_DECIDE;

}

}

else {

activate {

this.output = x;

this.status = PROCESS_DECIDE;

}

}

}

action (this $const * Process) _decide (this.status == PROCESS_DECIDE) {

activate Decide (this.output) {

this.status = PROCESS_DONE;

}

}

Figure 4.4: Code listing for Process component of the Shared Variable System (part 2)

63

The most interesting part of the Process component is the _access action. Like reactions,

actions honor the immutable phase by requiring a receiver with immutable indirection mu-

tability (this $const * Process). The precondition for _access tests that the Process

is ready to access the shared variable. When executed, the _access action samples the state

of the shared variable by calling the get_x pull port and assigns this to the local variable x.

Note that pull ports may only be called in the immutable phase. If the shared variable has

not been set as indicated by the sentinel value -1, the process sets it to the value requested by

the User (this.input) by activating the set_x push port. Once the mutable phase begins,

the Process outputs a message, copies the input variable to the output variable, and then

changes state to prepare to decide. If the shared variable has been set, i.e., another process

executed its _access action first, the process sets its output variable to the value of the

shared variable as stored in x and prepares to decide.

The final element in the Process component is the _decide action which activates the

Decide push port with the value of the shared variable stored in the output variable and

transitions to the done state.

The interface of the Process component gives hints as to its contextual dependencies and

intended use. The Process component expects an initialization message (initr reaction)

from the User and will report back to the User (Decide push port). The Process component

requires the ability to interrogate the value of the shared variable (get_x pull port) and the

ability to the set the shared variable (set_x push port).

The state transitions of a Process component can be determined by tracing the status

variable. A Process component starts in the idle state according to the Init initializer.

The Process will stay idle until its initr reaction is activated at which point it will enter

the access state. Given the fairness guarantees of the scheduler, the _access action will

eventually be executed as the Process is in the access state. The execution of _access is

governed by an if statement but both branches set the state of the Process component to

decide. Given the same fairness guarantees, the _decide action will eventually be executed

as the Process is in the decide state. The _decide action unconditionally sets the state of

the component to done. There is no way for a Process component to leave the done state

as all of its actions are conditioned on the Process being in either the access or decide state.

Similarly, the initr reaction only moves the Process from the idle to the access state. Thus,

64

the state of the component logically flows from idle, to access, to decide, to done assuming

that the User does indeed activate the initr reaction.

The preceding two paragraphs illustrate how the reactive component model and the proposed

programming language achieve principled composition. The behavior of a component can be

determined by only examining the text of the component. This is possible due to the strong

guarantees that 1) component state cannot be manipulated outside of an action or reaction,

2) actions and reactions are logically atomic, and 3) the scheduler will eventually execute all

enabled actions. For compositional reasoning, the behavior of a component can be abstracted

and stated in terms of assumptions and guarantees [55] about its interface elements, namely,

push ports, reaction, pull ports, and getters. For example, a Process component will decide

the value of the shared variable when initialized via the initr reaction.

Figure 4.5 shows the User component. The User component has three states indicating the

user is waiting to make a request, waiting for a response, or done. The first state variable v

contains the value sent in the request to a User. The status state variable contains the state

of the User. The decision state variable contains the value of the response. The error

state variable is a flag indicating that an error has occurred. User components contain a

push port initp that sends the requested value to the corresponding Process. The Init

initializer sets the requested value to the supplied parameter, the state of the User to request,

the decision variable to the sentinel value of -1, and the error flag to false.

The _init action shown in Figure 4.6 moves the User component from the request state to

the waiting state while initializing the corresponding Process component via the initp push

port. The _dummy action and the treatment of the error flag by the _init action are for

consistency with [64]. The Decide reaction prints out the identity of the User and the value

received by the User. If the User is not in an error condition and waiting for a response,

then the value of the decision is recorded and the User changes to the done state. Otherwise,

the error flag is set meaning that the corresponding Process activated the Decide reaction

before the _init action.

65

type UserStatus int;

const USER_REQUEST = 0;

const USER_WAIT = 1;

const USER_DONE = 2;

type User component {

v int;

status UserStatus;

decision int;

error bool;

initp push (v int);

};

init (this *User) Init (v int) {

this.v = v;

this.status = USER_REQUEST;

this.decision = -1;

this.error = false;

}

Figure 4.5: Code listing for User component of the Shared Variable System (part 1)

66

action (this $const * User) _init (this.status == USER_REQUEST || this.error) {

activate initp (this.v) {

if !this.error {

this.status = USER_WAIT;

}

}

}

action (this $const * User) _dummy (this.error) { }

reaction (this $const * User) Decide (v int) {

println (this, ‘ decided value is ‘, v);

activate {

if !this.error {

if this.status == USER_WAIT {

this.decision = v;

this.status = USER_DONE;

} else {

this.error = true;

}

}

}

}

Figure 4.6: Code listing for User component of the Shared Variable System (part 2)

67

type System component {

x Variable;

process [3]Process;

user [3]User;

};

init (this *System) Init () {

this.x.Init ();

for i ... 3 {

this.process[i].Init ();

this.user[i].Init (i + 100);

}

}

bind (this *System) _bind {

for i ... 3 {

this.process[i].get_x <- this.x.Get;

this.process[i].set_x -> this.x.Set ... i;

this.user[i].initp -> this.process[i].initr;

this.process[i].Decide -> this.user[i].Decide;

}

}

instance s System Init ();

Figure 4.7: Code listing for System component of the Shared Variable System

Figure 4.7 shows the System component. The system component contains a Variable sub-

component, three Process sub-components, and three User sub-components. The Init

initializer initializes all of the sub-components. The User processes are initialized with the

values 100, 101, and 102. Thus, User 0 will attempt to set the Variable to 100, User 1 will

attempt to set the Variable to 101, and User 2 will attempt to set the Variable to 102.

The _bind binder “wires” the system. The first line of the for loop binds the get_x pull

port of each Process to the Get getter of the Variable. The second line of the for loop

binds the set_x push port of each Process to the Set reaction of the Variable. Notice

that the Set reaction is indexed to avoid binding the same input multiple times. The third

line of the for loop binds the initp push port of each User to the initr reaction of each

Process. The fourth line of the for loop binds the Decide push port of each Process to the

68

User 0

initp(v int)

Decide(v int)

User 1

initp(v int)

Decide(v int)

User 2

initp(v int)

Decide(v int)

Process 0

initr(v int)

Decide(v int)

get x() int)

set x(v int)

Process 1

initr(v int)

Decide(v int)

get x() int)

set x(v int)

Process 2

initr(v int)

Decide(v int)

get x() int)

set x(v int)

Variable

Get() int

[0] Set(v int)

[1] Set(v int)

[2] Set(v int)

System

Figure 4.8: Diagram of a System component of the Shared Variable System

Decide reaction of each User. The final line of the listing creates an instance of the System

component named s and initializes it with the Init initializer. Figure 4.8 shows a graphical

representation of a System component.

Figure 4.9 shows sample output for an execution of a System component. The first line

of output is generated by the _access action of the Process component. In the sample,

Process 2 is the first process to set the Variable. As expected, only one Process sets

the variable. The final three lines of output show the identity of each User and the value

returned to it. As expected, the value returned to each User is consistent with how the

Variable was set.

69

x set to 102

0x1fd7258 decided value is 102

0x1fd71f8 decided value is 102

0x1fd7228 decided value is 102

Figure 4.9: Sample output for a System instance of the Shared Variable System

type Channel component {

queue Queue;

receive push (message $foreign *heap uint);

};

reaction (this $const * Channel) send (message $foreign *heap uint) {

var x *heap uint = move (message);

activate {

this.queue.Push (x);

};

}

action (this $const * Channel) _receive (!this.queue.Empty ()) {

activate receive (this.queue.Front ()) {

this.queue.Pop ();

};

}

Figure 4.10: Code listing for Channel component of the Heap Channel System

4.6.2 Heap Channel System

In this example, we demonstrate how the heap data type may be used to transfer objects

between components for efficient communication. The example consists of two components: a

top-level System component and a Channel component. The Channel component is a reliable

FIFO channel based on the Channel Automaton of [64]. The System component transfers

100 messages to the Channel component which then transfers the same 100 messages back

to the System. The messages consists of a heap with a uint root object.

Figure 4.10 shows the Channel component. A Channel component consists of a queue

of messages and a push port named receive which offers up a pointer to a heap with a

70

uint root. Since the parameter contains (is) a pointer, it must be declared with $foreign

indirection mutability. The elements of the Channel are named from the perspective of the

process that uses the Channel.

The send reaction moves the heap which makes the Channel the new owner of the heap.

Any heap operations on message after the move statement will return nil. The move occurs

outside of the activation because the message parameter is not available in the body of the

activation. Parameters and variables with types that contain pointers and have foreign

indirection mutability are not available in the body of an activate statement because they

may represent the state of another component which must be assumed to be invalid in the

mutable phase of a transaction. After a move, the state contained in a heap is no longer

available to the component that offered it up as an argument to a reaction. Thus, the result

of the move does not have foreign indirection mutability and is available in the body of the

activate statement.

Figure 4.11 shows the System component that exercises the Channel. A System component

consists of a Channel sub-component, a counter, and a push port for sending messages.

The _send action checks if the desired number of messages (100) has been sent. If not, the

System creates a new heap with a uint root. It then makes the new heap the active heap

via the change statement which also makes the root of the heap available in the variable y.

The heap root is initialized with the number of messages sent so far. The heap is then sent

to the Channel, a message is printed, and the number of sent messages is incremented.

The receive reaction receives a message back from the Channel. The System merges the

message which moves the root object of a heap to the active heap and returns a pointer to

the root object of the heap. Recall that all components have a default heap which is the

active heap upon entering an action, reaction, initializer, or getter. The final statement in

the reaction prints a message.

The system consists of two transactions: one that creates and transfers the heap from the

System to the Channel and another that transfers the heap from the Channel to the System.

The output of the program, then, consists of 100 lines indicating that a message was sent and

100 lines indicating that a message was received. Each line of output contains the message

number. Based on the fairness of the scheduler we expect 1) the 100 send lines to be in

71

type System component {

channel Channel;

send_count uint;

send push (message $foreign *heap uint);

};

init (this *System) Initially () { }

action (this $const * System) _send (this.send_count != 100) {

var x *heap uint = new (heap uint);

change (x, y) {

*y = this.send_count;

};

activate send (x) {

println (‘Sent ‘, this.send_count);

this.send_count++;

};

}

reaction (this $const * System) receive (message $foreign *heap uint) {

var x *uint = merge (message);

println (‘Received ‘, *x);

}

bind (this *System) Bind {

this.send -> this.channel.send;

this.channel.receive -> this.receive;

}

instance s System Initially ();

Figure 4.11: Code listing for System component of the Heap Channel System

72

order, 2) the 100 receive lines to be in order, and 3) the send line for message n appears

before the receive line for message n.

4.7 Related Work

rcgo is designed to be free from data races and draws upon existing work in this area.

Common techniques include 1) augmenting type declarations, signatures, etc., to indicate

sharing/locking requirements and effects; 2) associating objects with an owning thread or

memory region; and 3) transferring objects from one owner to another. The foreign at-

tribute of rcgo is similar to the lent attribute of Guava [12] and the limited attribute of

Promises [19]. All three techniques allow a reference to be temporarily shared but not stored

so as to create a shared resource. The transferable heap data type is similar to Islands [53]

and Values in Guava [12]. All three types represent object graphs with no external references

which allow them to be transferred from one owner to another owner. In rcgo, objects are

owned by component instances while Islands and Values are owned by threads.

Preventing data races in multi-threaded programs is accomplished by protecting critical

sections with locks. Flanagan and Abadi developed a type system for statically checking for

data races [37, 6]. This formalism was used in the design of both Guava [12] and Cyclone [47].

Locks are explicit in Cyclone while they are implicitly associated with the monitors of Guava.

The reactive components of rcgo are similar to the monitors of Guava in that access to shared

state is implicitly synchronized.

The approach taken by the languages cited thus far is to demonstrate freedom from data races

through the type system exclusively. The type system of rcgo is weaker than these languages

in that it is only possible to prove that objects are not shared between components via

foreign indirection mutability. The check for sound composition alluded to in Section 3.3.2

and described in Section 5.2 ensures that individual transactions are free from data races. As

described in Section 3.1.5 and Chapter 6, the scheduler has the responsibility of scheduling

transactions in a way that avoids data races between transactions.

73

4.8 Summary

This chapter has presented the rcgoprogramming language for reactive components. An im-

plementation of reactive components tests whether the assumptions upon which the model

rests are practical. Our approach is to design new programming language syntax and seman-

tics to capture and enforce the semantics of reactive components. As a matter of practicality,

we impose support for reference semantics which allow developers to use linked data struc-

tures and support for transferring data structures from one component to another. The cor-

responding features are a declarable indirection mutability that allows components to treat

pointers as foreign and a transferable heap data type that represents a self-contained linked

data structure. Components are expressed as a collection of fields (similar to a struct).

Ports (push and pull) are expressed as fields of a component. Actions and reactions are

expressed as method-like elements. Composition is accomplished via binders and instances.

Our implementation of an interpreter for rcgois described in Section 5.1.

The rcgo programming language presented in this chapter allows developers to take a prin-

cipled approach to developing general purpose reactive programs. First, a developer need

not identify shared state and add appropriate locking because state is not shared between

components and each action/reaction is atomic. Second, a developer need not worry about

the consequences of composition. In paradigms where composition is accomplished through

synchronous function call, developers must determine the conditions in which it is safe to

transfer control to a function. In the reactive component paradigm, the semantics of ac-

tivate statements and ports provide strong guarantees when composing and checking for

illegal composition, which is the responsibility of the run-time system (Section 5.2). Third,

developers are no longer burdened with mapping an inherently non-deterministic sequence

of events onto one or more sequential threads of control. Combined, the features of the

model and language allow developers to reason about the behavior of individual components

by only examining their text. This, in turn, allows the behavior of a component to be

abstracted which facilitates reasoning about components in the context of composition by

using assume-guarantee reasoning [55].

74

Chapter 5

Implementation

This chapter presents the algorithm for checking composition, the implementation of acti-

vations and heaps, and I/O facilities for an interpreter designed for the rcgoprogramming

language presented in Chapter 4.

5.1 Interpreter Organization and Implementation

The interpreter consists of a scanner, a parser, a sequence of semantic checks, a code gener-

ation phase, composition checks, and an execution phase. The interpreter is implemented in

C++. Flex and Bison were used to implement the scanner and parser, respectively. The se-

mantic checks include type checking and enforcement of intrinsic and indirection mutability

as set forth in Chapter 4. The code generation phase converts the AST into a tree of stack

operations. The composition check synthesizes transactions and checks them for soundness

(Section 5.2). The execution phase begins by initializing component instances by calling the

initializer associated with each instance. The scheduler then proceeds by executing transac-

tions according to the fairness criteria of Chapter 6. The scheduler implementations use the

POSIX threads (pthreads) library for concurrent execution and synchronization. The code

is available on GitHub6.

6https://github.com/jrw972/rcgo

75

https://github.com/jrw972/rcgo

5.2 Enforcing Sound Composition

This section outlines the algorithm for checking the composition semantics of reactive com-

ponents. As described in Chapter 3, one of the goals for the reactive component model is to

facilitate the construction of complex reactive systems through composition. The composi-

tion semantics of reactive components overcome limitations of I/O Automata and UNITY

but introduce concurrency hazards that could result in systems whose behavior is not well

defined. Two key hazards to be avoided are non-deterministic transactions arising from the

same state being updated by multiple transitions within a transaction, and recursive trans-

actions arising from cycles in composition. The goal of the composition check is to determine

whether a system is free of these hazards.

Checking for sound composition is a holistic problem. Ports facilitate third-party composi-

tion by being opaque, meaning that the action or reaction activating a port cannot know

about the state transitions executed as a result of activating the port. The state involved in a

transaction is not known until the components are instantiated and the ports bound. Thus,

checking for sound composition requires a reasonably complete understanding of the system.

To this end, the algorithm described in this section leverages the static system assumption7.

We leave relaxing the static system assumption, which will require extending the model and

proposed checking algorithm, to future work.

The reactive component semantics introduced Chapter 3 entail a number of assumptions

that allow composition checking to be formulated as a set of simple graph- and set-theoretic

problems. Activate statements are limited to the bodies of actions and reactions, and port

calls are limited to activate statements. Activate statements terminate the execution of

an action or reaction, meaning at most one activate statement will be called per action or

reaction body. Thus, a transaction can be viewed as a directed graph where each node is

an action or reaction and edges indicate that the source action or reaction activates the

target reaction. With this graph in place, the state involved in a transaction can be deduced

by treating the component instances as proxies for their state variables by creating sets of

instances and evaluating the sets for compatibility.

7I.e., that all components are known a priori and no components are added or removed from the system

at runtime.

76

The checking algorithm consists of several distinct steps, each of which is described next

in further detail. These steps are performed in the order they are presented as later steps

depend on earlier ones.

Enumerate instances and ports. The first step to checking composition is to enumerate

the components in the system using the static system assumption. The top-level components

are given by the declared instances. Sub-components are enumerated by recursively instan-

tiating fields that are also components. Let I denote the set of component instances. Fields

that are ports are also enumerated. Let S denote the set of push ports and L denote the set

of pull ports.

Enumerate bindings. Let i be a component instance of type c. Associated with c is a

set of binders B. Each binder b ∈ B is evaluated for i to create a set of bindings. A binding

either binds a push port to a reaction or a getter to a pull port. Let R denote the set of

reactions and G denote the set of getters. The result of enumerating the bindings is two

functions (look-up tables). The function reactions : S → {R} maps a push port to a set of

reactions. The function getters : L→ {G} maps a pull port to a set of getters.

Check bindings. Inverting reactions yields a function that maps a reaction to a set of

push ports, reactions−1 : R → {S}. The reactions−1 function is used to ensure that a

reaction either is bound to one push port or is not bound:

∀r ∈ R : |reactions−1(r)| ≤ 1 (5.1)

The getters function is used to ensure that a pull port is bound to exactly one getter:

∀l ∈ L : |getters(l)| = 1 (5.2)

Enumerate transactions. Let i be a component instance of type c. Associated with c is

a set of actions A. Each action a ∈ A is evaluated for i to create a transaction. A transaction

is a directed graph constructed as follows, as the example in Figure 5.1 illustrates:

77

Instance1
Action

Instance1*
Activation1

Instance1
Push1

Instance2
Reaction1

Instance2*
Activation3

Instance1
Push2

Instance1
Activation2

Instance1
Push3

Instance2
Reaction2

Instance2*
Activation5

Instance3
Reaction3

Instance3
Activation6

Figure 5.1: Example transaction

1. The root is an action a.

2. The descendants of the root are the activations in a and the pull ports and the getters

used in the immutable phase.

3. The descendants of the pull ports are the getters bound to the pull ports given by

getters .

4. The descendants of the activations are the push ports named in each activation.

5. The descendants of the push ports are the reactions bound to the push ports given by

reactions .

6. This process is then repeated for each reaction and getter.

A recursive transaction is formed when a reaction activates itself through the set of bindings

or a getter calls itself, which appears as a cycle in the transaction graph. The rcgo interpreter

uses an implementation of Tarjan’s algorithm [90] to detect cycles.

A non-deterministic transaction occurs when the same state is manipulated by multiple

transitions. Thus, the interpreter must determine what state is manipulated in a transaction

to determine if the constituent transitions are compatible. The interpreter uses a component

78

instance as a proxy for its state variables and determines how the state is accessed in each

transition. The possible access patterns include:

Write in which at least one state variable may be mutated (* in Figure 5.1);

Read in which at least one state variable is accessed but no state variables are mutated;

and

None in which no state variables are accessed.

The current implementation uses a conservative static analysis of the body of an activate

statement to determine if the activation mutates the state of the component. For composition

analysis, state variable access need only be determined for the mutable phase. However,

performing a similar analysis for the immutable phase and precondition provides a complete

description of state access in a transaction, which is used by multi-threaded schedulers to

determine which transactions can be executed in parallel.

The check for non-deterministic transactions continues by confirming that all possible exe-

cutions of a transaction are deterministic in two steps. First, two access sets are computed

for each node in the transaction. The first access set describes what state is accessed in

the immutable phase, while the second set describes what state is accessed in the mutable

phase. Let W = {Read ,Write} be the set of relevant access patterns8. Each element in

an access set h ∈ H is a pair (i, w) where i ∈ I and w ∈ W . Let inst : A ∪ R ∪ G → I

be a function that maps an action, reaction, or getter to the corresponding instance. The

immutable phase access sets are computed as follows:

• For an action, reaction, or getter denoted as x with instance i = inst(x) that reads the

state of i, the immutable phase access set is the union of the immutable phase access

sets of its children and the set {(i,Read)}.

• Otherwise, the immutable phase access set is just the union of the immutable phase

access sets of its children.

The mutable phase access sets are computed as follows:

8The None access pattern is intentionally ignored as an optimization.

79

Instance1
Instance1*
Instance2*
Instance3

Instance1*
Instance2*

Instance2*

Instance2*

Instance2*

Instance1
Instance2*
Instance3

Instance2*
Instance3

Instance2*

Instance2*

Instance3

Instance3

Figure 5.2: Example mutable phase access set calculation

• If the node is not an activation, or is an activation that does not access the state of the

instance, then the mutable phase access set is the union of the mutable phase access

sets of its children.

• Otherwise, the node is an activation belonging to instance i ∈ I with access w ∈ W
and the mutable phase access set is the union of the mutable phase access sets of its

children and {(i, w)}.

The access sets for the root of a transaction describe how state may be accessed during

each phase of the transaction. An analysis similar to the immutable phase analysis may be

applied to the precondition. All access pairs in the precondition and immutable phase access

sets have Read access. Access pairs in the mutable phase access sets may either have Read

or Write access. Activate statements that do nothing but log the state of a component are

a common example of mutable phase access pairs with Read access.

Figure 5.2 shows the mutable phase access set calculation for the transaction illustrated

in Figure 5.1. The root shows that Instance1 does not change in at least one activation

(Instance1) and may change in at least one activation (Instance1*), that Instance2 may

change in every activation (Instance2*), and that Instance3 is read-only in this transaction

(Instance3). The empty node in Figure 5.2 comes from an unbound push port.

80

The second step for detecting a non-deterministic transaction is to verify that a mutated

instance appears in at most one child node access set for the activation and push port nodes.

Let race : {H} × {H} → B be a predicate that indicates a data race between two access

sets. This function is defined as follows:

race(H1, H2) =

(∃i : (i,Write) ∈ H1 ∧ (i, x) ∈ H2) ∨ (∃j : (j,Write) ∈ H2 ∧ (j, y) ∈ H1) (5.3)

This is, a component that changes state in one access set may not appear in the other

access set. The race predicate is computed for each pair of child mutable phase access

sets in activation and push port nodes. This check succeeds everywhere but Activation2

in Figures 5.1 and 5.2, as Instance2* appears in both children. The activation and push

port nodes represent activities that will be performed together. That is, once control passes

to an activate statement, all push ports and their bound reactions are activated. In con-

trast, activations (as children of action and reaction nodes) represent mutually exclusive

alternatives: at most one activate statement is executed per action/reaction body. Thus,

a mutated instance appearing in two or more children of an activation node or push port

node indicates that the state of a component may be mutated in disparate ways leading to

a non-deterministic transaction.

Complexity. Maintaining appropriate forward and reverse hash maps of the bindings al-

lows the binding check to be performed in O(N) time where N is the number of ports in the

system. Similarly, the construction of a transaction graph can be performed in O(|N |+ |V |)
time where |N | is the number of nodes in the transaction and |V | is the number of edges.

Proving that a transaction is acyclic can be performed in O(|N |+ |V |) time where |N | is the

number of nodes and |V | is the number of edges.

A loose upper-bound on the complexity of the access set calculations for the non-determinism

check is O(k|N |2 log(|N |)) where |N | represents the number of nodes in a transaction and

k represents the maximum branching factor in the transaction. The size of the access set

for the root is |N |. Assuming a naive set implementation, the complexity of computing the

access set for the root is O(|N | log(|N |)). This must be repeated k times for all nodes in the

graph resulting in an overall complexity of O(k|N |2 log(|N |)).

81

A loose upper-bound on the complexity of the compatibility check is also O(k|N |2 log(|N |)).
Assume that the size of the access set at each node is |N |. A tree-based set lookup can

be performed in O(log(|N |)) time. The lookup must be performed k|N | times by the par-

ent. The lookup must repeated for each of the |N | nodes for a combined complexity of

O(k|N |2 log(|N |)).

The complexity of these algorithms has not presented a problem in practice as most of the

systems we have implemented have small numbers for |N |, |V |, and k.

5.3 Activations

When executing a transaction, the rcgo run-time system must execute the immutable phase

of all implied state transitions before executing any of the mutable phases. To accomplish

this, the run-time system uses a novel calling convention to create a list of deferred contexts

and statements that represent the mutable phase of each state transition. The immutable

phase constructs the list and the mutable phase processes the list. To present the calling

convention, we first present some details about the run-time system such as the ordinary

calling convention and push ports. We then describe the behavior of the calling convention

and explain it using an illustrative example.

Ordinary calling convention. The ordinary call mechanism in the rcgo run-time system

is similar to the C-decl calling convention. It assumes the existence of an instruction pointer,

which contains the address of the currently executing instruction, and a base pointer that

points to a location in the stack, which can be offset to access arguments and local variables.

An ordinary call in the language is accomplished through the following sequence:

1. (Caller) Create space for return values.

2. (Caller) Push arguments onto the stack, left to right.

3. (Caller) Push the instruction pointer onto the stack and transfer control to the body

of the function, method, action, reaction, getter, or initializer.

82

...

return values

arguments

previous instruction pointer

previous base pointer

locals

...

base pointer

Figure 5.3: Diagram of a stack frame. The stack is depicted as growing down.

4. (Callee) Push the base pointer onto the stack and set the base pointer to the top of

the stack.

5. (Callee) Reserve space on the stack for local variables.

6. (Callee) Execute the body of the function, method, etc.

7. (Callee) Pop the local variables, pop and restore the base pointer, pop and restore the

instruction pointer.

8. (Caller) Pop the arguments.

9. (Caller) Pop the return values.

The major difference between this calling convention and C-decl is that the arguments are

pushed in the opposite order to match the semantics of Go. The collection of arguments,

previous instruction pointer, previous base pointer, and reserved space is called a stack frame

(or call frame). Figure 5.3 shows the layout of a normal stack frame. For this presentation,

we assume that the stack grows down, i.e., the previous base pointer has a lower address in

memory than the previous instruction pointer.

83

Push ports. A push port is a field in a component, which is implemented as a pointer to

a linked list that contains the component pointer/reaction pairs that are bound to the push

port. The rcgo run-time system populates each push port before execution begins.

Synchronized two-phase calling convention. As was previously stated, the execution

of an activate statement is split into an immutable phase and a mutable phase. To prepare

for the mutable phase, the immutable phase must preserve the stack frame (context) of

the action or reaction that executes an activate statement and must record which activate

statement was executed so that the same activation can be resumed in the mutable phase.

To accomplish this, we devised the synchronized two-phase calling convention, which is used

to execute activate statements during the immutable phase.

Recall that activate statements may only appear in actions and reactions. After executing

the immutable phase of an activate statement in a reaction, control must be returned to

the calling activate statement so that it may activate other push ports. After executing the

immutable phase of an activate statement in an action, control must be returned to the rcgo

run-time system to begin the mutable phase.

In the ordinary calling convention, the stack frame for the reaction would be popped, control

would be returned to the caller, and the arguments would be popped. To preserve the stack

frame for use during the mutable phase, however, the activate statement returns control to

the caller without popping the frame and the caller does not pop the arguments. Thus, the

complete frame for the reaction is preserved on the stack.

Each such deferred stack frame is added to a list to make it available in the mutable phase.

Let head be a variable containing a pointer, initially nil, which will serve as the head of

a linked list. Before the activate statement returns from the immutable phase, it sets the

previous base pointer in the deferred stack frame to the value of head and updates head to be

the current base pointer which inserts the stack frame into the list. The rcgo run-time system

can iterate over the elements of the list by following the previous base pointer to access all

of the stack frames that are needed for the mutable phase. If the list is empty (head is nil),

then no activate statement was executed and the mutable phase may be skipped.

84

The final piece of information that must be recorded is the body of the activate statement

so that it is accessible in the mutable phase. Before returning from the immutable phase,

the activate statement records the body of the activate statement in the previous instruction

pointer slot of the current stack frame. It is safe to use the previous instruction pointer

because it is not used beyond the immediate return. Furthermore, it is at a fixed location,

which allows it to be accessed in any deferred stack frame.

The synchronized two-phase calling convention is used when executing an activate statement

and proceeds as follows:

1. Save the previous base pointer of the current stack frame in bp.

2. Set the previous base pointer of the current stack frame to the value of head.

3. Set head to the value of the base pointer.

4. Save the previous instruction pointer of the current stack frame in ip.

5. Set the previous instruction pointer of the current stack frame to the body of the

activate statement.

6. For each push port in the port call list:

(a) Push the arguments to the push port onto the stack.

(b) For each component pointer/reaction pair in the push port:

i. Push the component pointer onto the stack.

ii. Copy the arguments prepared in 6a onto the stack.

iii. Call the reaction.

7. Set the base pointer to the value of bp and return control to the address in ip.

The synchronized two-phase calling convention evaluates the arguments to a push port once

and passes a copy to each bound reaction. An alternative would be to evaluate the arguments

for each bound reaction. This means that the arguments may not be evaluated (i.e., the push

port is not bound to any reactions) or may be evaluated multiple times. If the arguments

contain an expression with side-effects, then the behavior of the code becomes dependent on

85

composition. While this may be desirable in some cases, we opted for making a port call

resemble an ordinary function call as much as possible. This sentiment also influenced our

decision to pass a copy of the arguments to each reaction as opposed to reusing the same

set of prepared arguments. Since each reaction starts with a copy of the arguments, it is

free to manipulate them as allowed by the semantics of Go. Furthermore, the arguments are

available in the mutable phase which obviates the need to make local copies of arguments.

This approach assumes that copying arguments does not generate significant overhead.

A major caveat when using the synchronized two-phase calling convention is that it must be

assumed that the stack pointer changes when calling a push port. To illustrate why this is

an issue, consider the case when a caller wishes to preserve the contents of a register. One

strategy is to push the contents of the register onto the stack, perform the call, and then pop

the value from the stack into the register. After calling a push port, the caller may no longer

assume that the previous value of the register is at the top of the stack. An easy work-around

is to allocate local variables, i.e., variables whose addresses are relative to the base pointer

instead of the stack pointer, for saving temporary values that must persist across a push

port call. In the same way, the variables used to iterate over the list of component/reaction

pairs in a push port should be allocated as local variables so that they may survive the calls

to the reactions.

Mutable phase. The mutable phase consists of executing all of the deferred activate

statements. The algorithm for doing so is as follows:

1. If the value of head is nil, stop. Otherwise, set the base pointer to the value in head.

2. Transfer control to the instruction indicated by the previous instruction pointer. Ex-

ecution continues until the body of the activate statement (implicitly or explicitly)

returns.

3. If the previous base pointer is nil, stop. Otherwise, set the base pointer to the previous

base pointer and go to 2.

86

...

argument (component pointer)

previous instruction pointer

previous base pointer

locals

arguments to push port

argument (component pointer)

arguments to push port

previous instruction pointer

previous base pointer

locals

...

activate statement body

activate statement body

nil

head

action

reaction

Figure 5.4: Diagram of the stack after the immutable phase when an action activates a single
reaction

The algorithm iterates over the list of deferred stack frames accessible through head. The last

element in the list is indicated by a previous base pointer that is nil. Control is transferred

to the previous instruction pointer which contains the body of the activate statement.

Example: one action, one reaction. Suppose an action activates a single push port

that is bound to a single reaction and the reaction has a single activation that does not

activate any push ports. Figure 5.4 shows a diagram of the stack after the immutable phase

for this scenario. The stack contains two frames, one corresponding to the action and one

corresponding to the reaction. The head variable points to the reaction frame which in turn

points to the action frame using the previous base pointer slot. The action frame points to

87

nil indicating that it is the last frame in the list. The previous instruction pointers point

to the bodies of the activate statements. Between the frames are the push port arguments

which are duplicated for the call to the reaction. If the push port had been bound to multiple

reactions, then the reaction portion of the diagram would be replicated to match the number

of bound reactions. If multiple push ports were activated by the activate statement, then

additional push port arguments and reactions would appear on the stack.

Calling convention efficiency. The synchronized two-phase calling convention has the

potential to be as efficient as a function or method call. The proposed calling convention

can be implemented directly on modern hardware architectures like x86 and x86 64, which

contain all of the registers and instructions necessary to support the synchronized two-phase

calling convention. The synchronized two-phase calling convention relies solely on the stack

which means that the underlying operating system must set up the stack, back it with

memory pages, etc. More importantly, it avoids the overhead of heap allocation. Port calls

resemble virtual method calls in that the reactions may need to be looked up before they can

be executed. However, this lookup could be avoided by inlining the body of each reaction

using the substitutional equivalence property. This could be performed prior to execution

or during execution using just-in-time compilation techniques. We leave the application of

these techniques to future work.

5.4 Heaps

In this section, we describe the implementation of the heap data type introduced in Chapter 4

and our approach to garbage collection. Our approach to implementing dynamic memory

allocation and garbage collection was shaped by the independence of state required by the

semantics of reactive components. Thus, instead of relying on a single global heap, the imple-

mentation contains a heap for each component that can be garbage collected independently

of the others. This independence allows garbage collection to be performed concurrently

with other activities using simple, single-threaded algorithms.

88

Slots and blocks. A slot is the smallest unit of memory that can be dynamically allocated.

Typically, a slot is the size of two pointers. A block is an extent of memory and a set of bits

indicating the allocation status of each slot in the extent. The status bits indicate if a slot

is allocated, if a slot is the beginning of an object, and if the slot has been marked by the

mark-and-sweep algorithm. Blocks also contain left and right pointers that allow them to

be formed into a binary tree ordered by the address of the extent.

Mark-and-sweep garbage collection. We implemented a simple mark-and-sweep algo-

rithm to collect garbage in a tree of blocks. The core of the marking phase involves scanning

extents for pointers to objects. When the algorithm comes across a slot that is allocated,

marked, and which contains a pointer-sized value that points to a location in the tree of

blocks that is also allocated, it marks the object indicated by the pointer. The algorithm

is bootstrapped by marking all slots in a designated root object. The algorithm repeatedly

scans the extents in the tree of blocks until no new marks can be added. At this point, the

sweep phase resets the allocated bit for all slots that are allocated but not marked and resets

the marked bit for the next run of the algorithm. A block that is not marked, meaning that

none of its slots were marked, is removed from the tree of blocks and deallocated.

Heaps. A heap contains a root block, a list of unallocated chunks of memory (free list),

and pointers to create a tree structure. When allocating an object from a heap, the heap

attempts to find an adequate chunk in the free list using a first-fit policy. If this fails, the

heap allocates a new block, inserts it into the tree and free list, and then allocates again using

the newly inserted chunk. The sweep phase of the mark-and-sweep algorithm reconstructs

the free list.

As described in Chapter 4, every component has an associated heap. A heap of this kind

is called an implicit heap. Heaps that are created via new and passed to move, merge, and

change are called explicit heaps. All heaps have a distinguished root object. The marking

phase of the mark-and-sweep algorithm is seeded with this root object. The root object of

an implicit heap contains the statically allocated state of the component that owns the heap.

The root object of an explicit heap is an object that is allocated in the same heap.

89

The semantics of reactive components allow heaps to form strict hierarchies, i.e., a tree

structure where the root of the tree is an implicit heap and the internal nodes and leaves of

the tree are explicit heaps. A strict hierarchy gives a graphical interpretation to merge and

move operations. A move operation moves a sub-tree from one location to another location.

Merging a heap h into another heap p involves removing h from the tree, inserting the blocks

of h into the tree of blocks of p, merging the free list of h into the free list of p, and inserting

the children of h as children of p.

The active heap. Logically, the rcgo run-time system maintains a stack of heaps where

the top of the stack represents the active heap. The active heap is used to satisfy all dynamic

memory requests, i.e., calls to new. The implicit heap that is associated with the receiving

component is pushed/popped upon entering/leaving an action, reaction, getter, or initializer.

Specific change statements are used to push and pop explicit heaps. Thus, the call stack

(i.e., the change statements that are active on the call stack) implements the stack of heaps.

When a new heap is created, it is inserted as a child of the active heap.

Atomicity. Chapter 4 describes how the semantics of reactive components permit con-

current access to heaps. The first scenario where this may occur is when a heap is passed

to a push port that is bound to multiple reactions. The semantics of reactive components

allow the reactions to be executed concurrently. Thus, two different threads may attempt to

move/merge the same heap at the same time. The second scenario occurs when a component

is concurrently accessed in multiple transactions that don’t mutate the state of the compo-

nent. The action, reaction, or getter is allowed to allocate memory, which means that heaps

must correctly handle concurrent access. Our implementation of heaps uses the Thread Safe

Interface pattern [84] to synchronize access to heaps when allocating, moving, and merging.

Heap links. Heaps are exposed to users via pointers to heaps, e.g., *heap int. These

pointers to heaps can be stored in objects allocated in another heap. The semantics of

change, merge, and move ensure that the parent-child relationships formed by pointers to

heaps match exactly those known by the run-time system. The two rules that enforce this

behavior are that 1) merge and move fail for any heap that is already on the stack of active

heaps and 2) all pointers in scope become foreign in the body of a change statement. The

90

0x12345678

0x12345678

0x12345678

pointer to heap

0x90ABCDEF

heap link

heap object

heap

Figure 5.5: Example illustrating heap links. The objects on the far left represent user-level
pointers to heaps, e.g., * heap int. The middle object is a heap link, which contains the
address of the child heap that appears on the far right.

second rule forces the user to move heaps if they desire to change the hierarchy, because

pointers with foreign indirection mutability cannot be stored. Recall that the stack of active

heaps is set up by active change statements. Using the inductive argument that the parent-

child relationship was previously correct, then the ancestors of the active heap must all

appear in the stack of active heaps. Thus, failing to merge and move heaps on the active

stack prevents the formation of cycles.

As illustrated in Figure 5.5, a user-level pointer to a heap points to an object called a

heap link which in turn points to a heap. The objects on the left side of the diagram are

objects in the parent heap and the object on the right is the child heap. The extra level of

indirection introduced by the heap link concentrates all references to the child heap into one

location. Moving a heap involves reading the pointer out of the heap link and replacing it

with nil. This makes the heap inaccessible to the previous owner (parent), which maintains

the isolation of state between reactive components. The marking phase of the mark-and-

sweep algorithm is aware of heap links and marks heaps as being reachable from another

heap. Unreachable heaps are pruned from the hierarchy during garbage collection.

Concurrent garbage collection. Two features of reactive components permit concurrent

garbage collection. First, the state of each reactive component is isolated which allows

garbage collection to be performed on different components at the same time without conflict.

Second, garbage collection can be framed as an action to be executed by the scheduler.

Thus, associated with each component is an action that invokes the garbage collector on

91

the implicit and explicit heaps of the corresponding component. Furthermore, the action is

considered to modify the state of the component which prevents all transactions involving

the component from executing concurrently with the garbage collection action. We assume

that the scheduler executes the garbage collection action often enough that no additional

invocations of the garbage collector are necessary. More plainly, we do not trigger the

garbage collector in the allocation routine, which is the approach taken by many systems

using garbage collection. Most garbage collection algorithms include a scan of the call stack

as objects reachable from the call stack must not be collected. In our approach, such scanning

is useless since the call stack is empty when executing the garbage collection action and the

root object is embedded in the implicit heap that is being collected.

5.5 I/O

A possible bottom-up approach to support reactive components would be to write a kernel

for reactive components, i.e., a scheduler and memory manager, and then write an operat-

ing system and application suites using reactive components. This approach, however, is

impractical and risky given the expense of developing software for an as yet unproven tech-

nology. A top-down approach instead involves proving the utility of reactive components at

the application layer and then proceeding to lower layers when appropriate. This approach

far less risky and is the one taken in this chapter. To develop and evaluate real-world ap-

plications, the input/output facilities of the host operating system then must be exposed to

reactive components so that they may communicate and interact with other processes and

systems. This section describes our approach to exposing the input/output (I/O) facilities

of a Linux/GNU system to reactive components.

A Linux/GNU system offers a variety of I/O and communication mechanisms including pipes,

sockets, shared memory, and message queues. For our purposes, we focused on mechanisms

that are available through a file descriptor interface. Our approach consists of two steps.

The first step is to add file descriptors and operations for manipulating them, such as read

and write, to the rcgo language. The second step was to wrap file descriptors in reactive

components to make their functionality available via a conventional reactive component

interface.

92

The main consideration when supporting file descriptors was to ensure that reads and writes

were non-blocking, as a blocking read or write may violate fairness. A transaction that blocks

on a read or write would adversely affect the latency and throughput of the scheduler as the

scheduler thread would be blocked and not able to service other transactions. Furthermore,

a blocking transaction holds the locks for all components involved in that transaction, and

other enabled transactions that also involve those components would be denied service which

also violates the fairness requirement of the scheduler. To prevent these problems, all file

descriptors when they are created are set to be non-blocking. Thus, all subsequent reads

and writes are also non-blocking.

Threaded programs using non-blocking I/O typically use some kind of synchronous I/O

multiplexing which allows a thread to determine which file descriptors are ready for reading

and/or writing. The goal in doing so is to allow a thread to service multiple file descriptors

and yield the processor if no file descriptors are ready. To map this concept into reactive

components, we introduced a readable function that tests if a file descriptor is ready for

reading and a writable function that tests if a file descriptor is ready for writing. These

functions are intended to be used in preconditions so that an action becomes enabled when

the corresponding file descriptor is ready.

The readable and writable functions are also used as part of the termination protocol of

the Partitioned scheduler described in Section 6.4. When the termination protocol enters

the checking phase where it attempts to prove that every precondition is false, it records

which file descriptors are being checking for readability and writability. If the termination

protocol proves that all preconditions are false but some preconditions depend on readability

or writability, it enters a state where it waits for one of the file descriptors to become ready.

This allows a system of reactive components to sleep while it waits for external input like a

message from a remote host or a timer.

Conceptually, a file descriptor contains component state and should be subject to all of the

constraints of normal component state. The two main constraints are 1) it cannot be shared

by another component and 2) it cannot change in the immutable phase of a transaction.

To enforce the first constraint, file descriptors are implemented as dynamically allocated

opaque data structures. Forcing dynamic allocation makes file descriptors subject to the

pointer sharing rules, i.e., they can only be shared via foreign indirection mutability in the

93

Timer

Alarm()

Sntp

Alarm() Send(UdpMessage)

Receive(UdpMessage)

UdpParticipant

Send(UdpMessage)

Receive(UdpMessage)

Figure 5.6: Diagram of a Simple Network Time Protocol (SNTP) client

immutable phase. Making the data structure opaque prevents sharing through copying. The

normal immutable phase rules in concert with properly declared built-in functions prevent

file descriptors from changing in the immutable phase. That is, functions like read and

write require a pointer to a file descriptor with mutable indirection mutability.

To test these ideas, we implemented a Simple Network Time Protocol (SNTP) client. SNTP

attempts to acquire the current time from a server while simultaneously measuring a round-

trip latency to determine an accurate local time. The client timestamps the request with

the local time and sends it to the server. The server timestamps the request when it arrives

and again when it sends it back to the client. Finally, the client timestamps the request

when it receives it back from server. The client uses the timestamps to determine the offset

of the local clock from the clock on the server. This procedure is repeated periodically to

synchronize the local clock. The messages are exchanged using the User Datagram Protocol

(UDP).

Figure 5.6 shows a diagram of the SNTP client application. The top-level Sntp compo-

nent contains two sub-components: Timer and UdpParticipant. The Timer component is

a periodic timer implemented by wrapping a timerfd file descriptor. The UdpParticipant

component wraps a UDP socket file descriptor and is capable of sending and receiving UDP

messages. The Sntp component uses these components to implement an SNTP client. When-

ever the Timer fires the alarm, the UdpParticipant creates an SNTP request and sends it

using the UdpParticipant. This all happens as part of one atomic transaction. Whenever

the UdpParticipant receives a message, it passes it to the Sntp component which deserializes

it, timestamps it, and interprets it to compute the local clock offset.

94

The Sntp component demonstrates how composition (with reactive components for I/O)

can be used to construct systems. The Timer and UdpParticipant components are generic

since they do not contain any SNTP related logic. Furthermore, they have well-defined

concurrency semantics that will be enforced when they are composed in other systems. Thus,

it is possible to use the reactive component model to produce reusable reactive software.

5.6 Summary

The goal of implementing reactive components was to test the practicality of the reactive

component model. Specifically, we desired to know how the various features of the model

could be implemented, which features were troublesome, and how the implementation utilizes

various assumptions. Flexibility in the reactive component model necessitates a check for

sound composition. The sound composition algorithm described in Section 5.2 uses the static

system assumption and the component proxy assumption to generate a graphical model of

each transition and check it for determinism. A cursory analysis yielded an upper bound of

O(kn2 log(n)) where n is the number of instances involved in the transaction and k is the

maximum branching factor in the transaction.

To implement activate statements, we developed the synchronized two-phase calling conven-

tion which executes the immutable phase of a transaction first and preserves the context

necessary for the second (mutable) phase. The synchronized two-phase calling convention

was implemented using standard function call and stack manipulation facilities.

The isolation of component state is enforced in two ways. First, the type system prevents

components from sharing pointers directly via $const and $foreign modifiers. Second, the

implementation uses garbage collection to prevent indirect sharing through dangling pointers.

In this chapter, we describe the implementation of heaps and how they are used for dynamic

memory allocation. Heaps are designed so that they can be merged and moved. At the user

level, all references to a heap are encapsulated by a “link” which is used to enforce atomic

moves and merges. The independence of state between components allows each component

to have its own heap (or tree of heaps) that can be garbage collected independently of

other components. Garbage collection can be conducted in parallel by associating a garbage

collection action with each component.

95

To enhance the practicality of the reactive component implementation, we introduced file

descriptor I/O that allows reactive components to interact with a variety of operating system

facilities. All I/O is non-blocking to preserve the fairness of the scheduler. Components may

use the readable and writable functions to test file descriptors. The scheduler uses these

functions as part of the termination protocol to sleep while waiting for external inputs. File

descriptors are treated as component state and therefore cannot be shared between compo-

nents or mutated during the immutable phase. Using file descriptor I/O, we implemented

an SNTP client, which demonstrates how systems can be built up from simple components.

96

Chapter 6

Transaction Scheduling

A scheduler is responsible for executing transactions according to the fairness criteria set

forth in Section 3.1.5. Of particular interest is the design and implementation of general-

purpose schedulers that are capable of executing transactions in parallel. The main inputs

to a scheduler are the transactions enumerated by the composition analysis. The access sets

calculated for each transaction are used by concurrent schedulers to avoid non-deterministic

state transitions. In this chapter, we introduce some of the issues involved in designing and

implementing a scheduler for reactive components, through a series of increasingly complex

scheduler designs. The two concrete implementations described later will draw upon the

designs of these schedulers. An evaluation of these schedulers indicates that reactive com-

ponents may be a viable event-based alternative to threads in terms of performance but

additional work is necessary to generalize this claim.

6.1 The Transaction Scheduling Problem

A scheduler is responsible for mapping transactions to processor cores so that they can be

executed according to the semantics of reactive components. As described in Section 3.1.5,

concurrent execution is modeled by a scheduler that serially and repeatedly executes atomic

transactions according to fairness, which means that all enabled transaction must eventually

be executed. A scheduler implementation supporting concurrent execution must take care to

preserve the fairness and atomicity required by the model. A scheduler is fair if it executes

each transaction an infinite number of times or terminates by reaching a fixed point. A

scheduler is safe if it avoids conditions where one transaction is changing the state of a

97

component while another transaction is reading or writing the same state. The execution of

a transaction in a safe scheduler is logically atomic.

A scheduler is responsible if it only terminates when a fixed point has been reached. Termi-

nation is not a requirement for a scheduler, but it is useful from the perspective of testing

and evaluation. We are interested in designing fair, safe, and responsible schedulers, as these

schedulers enforce the semantics of reactive components.

We model a scheduler as a state transition system consisting of a set of possible states S,

an initial state s0 ∈ S, and a transition function σ : S → S. The function σ is applied

to the current scheduler state s to generate the next scheduler state s′ = σ(s). To refer to

previous scheduler states, we assign a logical time t ∈ N to each scheduler state so that

s(t + 1) = σ(s(t)). Using this notation, the initial state of the scheduler is s(0) = s0. The

definitions of S, s0, and σ will be unique to each scheduling algorithm. We are interested in

the properties of σ as they relate to enforcing the scheduling semantics of reactive components

and how these properties help or hinder a scheduler implementation.

The generic state of a scheduler is modeled as a vector where each element of the vector

contains the scheduling state associated with a particular transaction. Let s ∈ S be a

generic scheduler state and let T be the set of transactions. The value su(t) represents the

scheduler state for transaction u ∈ T at time t. Each value su(t) is a pair (p, q). The

value p ∈ {⊥, 0, 1} represents the precondition of the transaction known by the scheduler as

either unknown (⊥), false (0), or true (1). The value q ∈ Q = {Idle,Eval ,Exec} represents

the state of the transaction as either being idle, evaluating the precondition, or executing

the immutable and then mutable phases. Initially, all transactions start with an unknown

precondition in the idle state:

∀u ∈ T : su(0) = (⊥, Idle) (6.1)

In the model, the precondition of each transaction is always defined and known since the

state against which the preconditions are evaluated is always defined and known due to

atomicity. In a real scheduler, the execution of a transaction takes time and the state

of all involved components is not defined for this duration. Consequently, the values of

preconditions derived from this state are also not defined during the same duration. After

98

Istart

V

X

a

e

d
b

c

λ

λ

λ

Figure 6.1: State transition diagram for the state component of the dynamic transaction
state. I represents Idle, V represents Eval , and X represents Exec.

a transaction, all preconditions based on any mutated state are undefined and must be

re-evaluated to determine if they are true or false.

The dynamic transaction state su(t) is itself a state transition system and much of the

challenge in designing a scheduler revolves around the details of enforcing this transition

system for concurrently executing transactions. Figure 6.1 shows the state transition diagram

for the state component of the dynamic transaction state (q of su(t)). Each state has a self

loop that allows a transaction to stay in the same state while another transaction changes

state (indicated by λ). There are two main paths through the transition system. The path

abc corresponds to evaluating the precondition and immediately executing the immutable

and mutable phases. The path adec corresponds to evaluating the precondition and later

executing the immutable and mutable phases. Let Γ be the set of transitions indicated in

Figure 6.1. Each element γ ∈ Γ is a pair in Q×Q. The following condition states that every

transition in a scheduler must obey the transition system described in Figure 6.1:

∀t, u : (su(t).q, su(t+ 1).q) ∈ Γ (6.2)

The precondition of a transaction is established as true or false as a result of leaving the

Eval state (transitions b and d in Figure 6.1):

∀t, u, su(t).q = Eval ∧ su(t+ 1).q 6= Eval : su(t+ 1).p ∈ {0, 1} (6.3)

99

The precondition of a transaction must be true while executing the immutable and mutable

phases:

∀t, u : su(t).q = Exec =⇒ su(t).p = 1 (6.4)

A transaction that mutates the state of one or more components invalidates the precondition

of all transactions whose preconditions are derived from the same state. Let pre : T → H be a

function that maps a transaction to the set of access pairs corresponding to the precondition

of a transaction. Let imm(u) and mut(u) be similarly defined functions that return the

immutable phase access set and mutable phase access set for transaction u ∈ T . All of these

functions may be computed as part of composition analysis. The set of transactions whose

“enabledness” is potentially affected by a given transaction u ∈ T is given by the following

function9:

affected(u) = v ∈ T : race(mut(u), pre(v)) (6.5)

The result of a transaction being executed has the effect of invalidating the precondition for

all affected transactions:

∀t, u : su(t).q = Exec ∧ su(t+ 1).q 6= Exec =⇒

∀v ∈ affected(u) : sv(t+ 1).p = ⊥ (6.6)

The previous requirement represents a worst case scenario where the transaction mutates

all components in the mutable access set. An obvious optimization is to only invalidate

preconditions derived from the subset of instances that actually changed state.

A scheduler is safe if it avoids data races among the set of active transactions. We define

the dynamic access set of a transaction as follows:

access(su) =


∅ if su.q = Idle

pre(u) if su.q = Eval

imm(u) ∪mut(u) if su.q = Exec

(6.7)

9The race function is defined in Section 5.2.

100

A scheduler state is safe if there are no data races:

safe(s) = ∀u, v ∈ T, u 6= v : ¬race(access(su), access(sv)) (6.8)

A scheduler is safe if it only enters safe states:

∀t : safe(s(t)) (6.9)

In a fair scheduler, an enabled transaction cannot be postponed indefinitely. Argument

by contradiction is one approach to demonstrating that a scheduling algorithm is fair. If

one assumes that a scheduler is not fair, then there must be some scheduler state s(tc)

that contains a transaction u that is enabled in every subsequent state but never executed.

The “enabledness” described in the previous sentence is not the value p in the definition

of su(t) which is the value known by the scheduler. Rather, it refers to the actual value of

the precondition based on the state contained in the component instance. The argument

is completed by demonstrating that the scheduler does in fact execute u. For example, a

scheduler that processes transactions in first-in first-out (FIFO) order eventually executes

every transaction in the queue.

A scheduler design must reconcile the forces arising from the basic execution model, fairness,

safety, and efficiency. The basic execution model forces the scheduler to establish precon-

ditions (Equation 6.3) before executing the immutable and mutable phases (Equation 6.4).

Fairness compels the scheduler to execute certain transactions while safety compels the

scheduler to avoid executing certain transactions (Equation 6.9). With respect to efficiency,

a scheduler design may attempt to exploit the concurrency available in the set of transactions

through parallel execution.

To illustrate the interplay among these forces, consider a concurrent and work-conserving

scheduler. Let the system consist of the set of transactions S ∪ {τ} where S is a set of

transactions that are safe with respect to each other and τ is a transaction that is not safe

with respect to all transactions in S. Thus, at any given time, the scheduler can be executing

transactions in S or τ . Suppose the scheduler is concurrently executing two transactions

from S. When one of the transactions terminates, the scheduler must immediately execute

another transaction since it is work conserving. For safety, the scheduler will execute another

101

transaction from S as it is unsafe to execute τ . This pattern of behavior induced by the

work conserving nature of the scheduler may perpetually deny service to τ . For fairness, the

scheduler must refrain from executing another transaction so that the τ transaction can be

serviced. Thus, with respect to parallel and concurrent execution, a scheduler design must

balance gains in performance from exploiting parallelism with the requirement of fairness.

The scheduling problem for reactive components, then, is: given a set of active transac-

tions, select the next transaction for evaluation (precondition) or execution (immutable and

mutable phase) subject to fairness and safety.

6.2 Scheduler Design Criteria

Different factors may influence the design of transaction schedulers, which we distinguish

according to four dimensions. A given scheduler may be: lazy or eager, oblivious or knowl-

edgeable, cautious or speculative, and non-preemptive or preemptive.

Lazy and eager schedulers. A scheduler may be lazy or eager with respect to evaluating

preconditions. A lazy scheduler defers evaluating the precondition until the transaction is

selected for execution (path abc in Figure 6.1). An eager scheduler evaluates preconditions

after the state upon which they are based changes (path ad in Figure 6.1). The perceived

benefit of a lazy scheduler is that it may reduce overhead by not evaluating preconditions

while the perceived benefit of an eager scheduler is that it may only select actions which are

enabled, which may result in more efficient use of acquired resources.

Oblivious and knowledgeable schedulers. We have considered two kinds of schedulers

with respect to safety. The first is an oblivious scheduler that doesn’t have direct access to

the (global) scheduler state and therefore can’t know the set of next states. An oblivious

scheduler selects a transaction and then determines if the transaction is safe to execute. This

typically involves a locking mechanism to ensure that all of the instances in the requisite

access sets are available. The second kind of scheduler is a knowledgeable scheduler that does

know the global scheduler state. A knowledgeable scheduler can be proactive and maintain

102

a set of transactions that are safe with respect to the set of active transactions. This would

allow a knowledgeable scheduler to efficiently select a safe action. The open question is

whether or not the efficiency of selection overcomes the overhead of maintaining the set of

safe transactions.

Cautious and speculative schedulers. A cautious scheduler avoids all race conditions

and always satisfies the safety requirement of Equation 6.9. A speculative scheduler opti-

mistically evaluates preconditions and executes transactions but aborts them if a conflict is

discovered. Transactional memory is one technology that could be used to build a specu-

lative scheduler. For this work, we will assume that preconditions, immutable phases, and

mutable phases are not aborted and leave the application of transactional memory to reactive

components as future work.

Non-preemptive and preemptive schedulers. An active transaction is one whose pre-

condition is being evaluated or whose immutable or mutable phase is being executed. An

active transaction need not physically occupy a processor core. This condition occurs in pre-

emptive schedulers that can interrupt a precondition, immutable phase, or mutable phase to

do other work. In contrast, a non-preemptive scheduler does not interrupt the execution of

a transaction, i.e., transactions are physically atomic. Preemption may be useful to reduce

the latency of transactions, support real-time priorities, etc. We leave the application of

preemption to reactive component schedulers as future work.

6.3 Scheduler Design

The previous sub-section illustrated a number of design dimensions for reactive component

schedulers: lazy vs. eager, oblivious vs. knowledgeable, cautious vs. speculative, and non-

preemptive vs. preemptive. For tractability, we will focus on the design and implementation

of particular schedulers that are lazy, oblivious, cautious, and non-preemptive, and leave a

more complete exploration of the design space for future work. The goal of the following

discussion is to introduce some of the issues when designing and implementing a scheduler,

103

through a series of increasingly complex scheduler designs. We will describe the concur-

rent schedulers in terms of threads, which may be dedicated to physical processor cores or

scheduled on one or more cores by an operating system.

Serial round-robin scheduler. Perhaps the simplest scheduler that can be implemented

is a serial round-robin scheduler. This design may be appropriate in the context of unipro-

cessor embedded systems with tight resource constraints. The scheduler repeatedly cycles

through the list of transactions, evaluating the precondition of each transaction and exe-

cuting the immutable and mutable phases if the precondition was true. If no transaction is

executed in a cycle, then the scheduler terminates. This scheduling algorithm is fair by virtue

of the strict round-robin policy, safe from the fact that it is serial and non-preemptive, and

responsible by definition. The selection efficiency of a scheduler is the number of transactions

that must be selected before executing an enabled transaction or terminating. The selection

efficiency of this algorithm is O(|T |) as illustrated by a system where one transaction that

is perpetually enabled while all of the other transactions are perpetually disabled.

Serial scheduler with a transaction work queue. The perceived weakness of the serial

round-robin scheduler is the overhead of evaluating preconditions that evaluate to false. So,

instead of cycling through the list of transactions, this scheduler maintains a work queue of

transactions whose preconditions are true. At initialization time, the scheduler populates the

queue by evaluating the precondition of each transaction in the system. The scheduler then

repeatedly takes a transaction from the queue, executes it, and then inserts any newly enabled

transactions, making this scheduler an eager scheduler. To find newly enabled transactions,

the scheduler uses the access set generated during composition analysis. That is, after

executing a transaction, the scheduler tests all of the transactions for the components in the

access set and adds them to the queue if necessary. Alternatively, the scheduler may assume

that the precondition is true and insert the transaction, knowing that the precondition will be

re-evaluated when the transaction is selected. The scheduler terminates when the work queue

is empty. This scheduling algorithm is fair if the work queue is processed in first-in first-out

(FIFO) order, safe because the algorithm is serial and non-preemptive, and responsible since

an empty work queue implies no transaction is enabled.

104

The pathological scenario for the serial round-robin scheduler applies to this scheduler as

well, so the worst-case selection efficiency of the algorithm is O(|T |). Assume that the most

complex transaction in the system involves c components and some component has a system-

wide maximum transaction count of a. In the worst case, the scheduler must evaluate c× a
preconditions for every transaction that it executes. Thus, the overhead associated with this

scheduler is related to the compositional structure of the system that it is executing. This

overhead may be acceptable for systems where c and a are small or for systems whose average

work queue size is small compared to the total number of transactions in the system. This

suggests that the average number of enabled transactions compared to the total number of

transactions may be a useful way to analyze reactive component systems and schedulers. For

example, the serial round-robin scheduler would be appropriate for a heavily enabled system

while the serial scheduler with a transaction work queue would be appropriate for a lightly

enabled system.

Serial scheduler with an instance work queue. This scheduling algorithm attempts to

squeeze a little more performance from the single-threaded scheduler with a transaction work

queue. The significant difference is that after the scheduler executes a transaction, it places

the component instances that might have changed state into the work queue. The work

queue is initialized with all of the components in the system. When processing a component

on the work queue, the scheduler cycles through all of the transactions for that particular

component. The potential increase in performance comes from deferring the evaluations of

the preconditions until absolutely necessary, i.e., lazy scheduling. The scenario on which this

scheduler attempts to capitalize is when some components are rarely involved in transactions.

An instance is enabled if at least one of its transactions is enabled. Thus, this scheduler is

appropriate for systems that are lightly enabled from the instance perspective.

Concurrent global round-robin scheduler. This scheduler runs P > 1 copies of a

round-robin scheduler in parallel. To be safe, we must devise a protocol that allows the

threads to avoid concurrently executing transactions that may mutate the same state. Using

the assumption that a component instance is a proxy for its state variables, the scheduler

locks all instances in the access set before evaluating the precondition and executing the

transaction. Recall that composition analysis determines the set of components that are

105

involved in a transaction and how they are accessed (Read or Write). The acquired lock

corresponds to the access type, which allows multiple threads to be reading a component

but only one thread to be writing. The locks are acquired in a determined order to avoid

deadlock (Havender’s Principle). The concurrent global round-robin scheduler is fair so long

as the underlying locking mechanism is fair, i.e., there is no reader or writer starvation.

The algorithm is also responsible, as each thread proves to itself that there are no enabled

transactions left in the system.

An important concern with this algorithm is the locking required to coordinate access to

component instances. One negative characteristic caused by the locking is that a thread

may become idle while waiting for a lock. Thus, we might look for alternatives that allow a

thread to do other useful work while waiting for a lock. Another goal might be to look for

ways to coordinate access to component instances without using locks at all. Some of these

ideas are explored later in this chapter.

Concurrent partitioned round-robin scheduler. Rather than have each thread cycle

through the entire list of transactions, the concurrent partitioned round-robin scheduler

divides the list of transactions among the available threads. Like the global version, this

algorithm is fair if the underlying locking mechanism is fair. Similarly, this algorithm is safe

as locks are used to coordinate access to component state. However, for this algorithm to be

responsible, we must add a protocol that allows the threads to detect that the system has

reached the termination condition.

The termination protocol consists of a barrier synchronization and then a check to establish

the termination condition. The termination protocol begins when a scheduler thread sends

a termination request to the manager thread. To process a termination request, the manager

thread stops each scheduler thread and then checks that all transactions are disabled. If

all of the transactions are disabled, the system terminates. Otherwise, the manager thread

restarts the scheduler threads. A scheduler thread may choose to request termination at any

time and different heuristics may be used to determine when a scheduler thread makes the

termination request. Deferring the request has the advantage of avoiding the termination

protocol overhead. For example, a scheduler thread might wait until it makes a complete

pass through its list of transactions without executing one before making the request.

106

Such a centralized termination protocol is rather disruptive as it must stop the system to

check for termination. Thus, one goal may be to let a thread idle itself and be woken up by

active neighbors. Similarly, the scheduler threads can check for the termination condition in

parallel and wake up all of their neighbors if a transaction is enabled. Finally, the manager

thread may be done away with entirely and the protocol rewritten as a distributed protocol,

as we discuss below.

6.4 Scheduler Implementations

We now describe two specific scheduler designs that we chose for implementation and evalua-

tion. Each scheduler takes a different approach to the design dimensions described previously,

resulting in distinct consequences for systems that use it.

Concurrent scheduler with a global instance work queue. The first scheduler that

we implemented was a concurrent scheduler with a global instance work queue. The work

queue is initialized to contain all of the instances in the system. The scheduler threads take an

instance from the work queue, select and execute all transactions in the instance, and insert

any instances that might have changed state back into the work queue. Fairness is achieved

by processing the queue in FIFO order and safety is achieved through the aforementioned

locking scheme. The termination protocol for this scheduler involves counting the number

of instances that are currently in the queue and the number of instances currently being

processed by the scheduler threads. When this count drops to zero, there are no enabled

instances in the system and the system may terminate responsibly.

One potential weakness of this scheduler is the synchronization required to coordinate access

to the work queue, which adds a communication overhead and may create contention if the

scheduler threads are lightly loaded, i.e., they frequently return to the queue looking for

work. Thus, the scalability of this scheduler is a concern.

Concurrent partitioned round-robin scheduler with asynchronous locking and

distributed termination. One of the goals when designing this scheduler was to avoid

107

the blocking behavior and overhead of locking observed during our evaluations of the concur-

rent scheduler with a global instance work queue. The pthreads reader/writer locks used to

protect each component instance were replaced by asynchronous reader/writer locks imple-

mented in user-space. The asynchronous locks consist of a spin lock, variables indicating the

status of the lock, and a queue of requests. To acquire a lock for a component, a scheduler

thread first acquires the spin lock and then checks if the lock can be acquired immediately,

which it can if either the lock has no owner or the thread is a reader (i.e., it is requesting

a read lock); the lock has already been locked by another reader; and there are no writers

in the queue. Otherwise, the request is placed on the queue. A scheduler thread failing to

acquire the lock can either idle or attempt to execute a different transaction. When a lock

is unlocked, the thread at the front of the queue is notified so it may resume processing the

transaction that it was attempting to execute. The protocol avoids reader and writer starva-

tion and ensures fairness since the queue is processed in FIFO order. This scheduler is work

conserving since a scheduler thread continues to execute transactions instead of blocking.

However, scheduler threads do not steal work from other threads.

The aforementioned centralized termination protocol has the potential to be disruptive.

Thus, the motivation for a distributed termination protocol is to keep the scheduler threads

as busy as possible meaning that the termination protocol is started infrequently and the

termination protocol itself aborts as early as possible if the termination condition has not

been reached. For this scheduler, the threads are arranged in a ring and communicate using

asynchronous message queues. Messages are stamped with the id of the originating thread.

The protocol forwards messages around the ring so a thread receiving a message from itself

knows that all of the threads have processed that message.

Like the centralized version, the ring-based distributed termination protocol consists of a

synchronization phase and checking phase. Scheduler threads begin in the RUN state where

they are actively cycling through their lists of transactions. When a scheduler thread deter-

mines that termination may be possible, it sends a message to its neighbor indicating that

it is entering the SYNC state. If the neighbor thread is in the RUN state, it resolves to

send a reset message the next time it executes a transaction which means that the termina-

tion condition has not been established. Otherwise, the neighbor thread itself is already in

the SYNC state and forwards the message. Reset messages are unconditionally forwarded

around the ring and cause all threads to enter the RUN state. Synchronization messages are

108

only forwarded if the thread receiving the message is in the SYNC state. Thus, if a thread

receives its own synchronization message, all other threads in the scheduler are in the SYNC

state. Multiple threads may receive their own synchronization message at the same time.

The goal of the synchronization phase is to establish a common point of reference for de-

termining if any transaction is enabled. When a thread receives its own synchronization

message, it sends a message to its neighbor that it is entering the CHECK state. This mes-

sage is forwarded around the ring causing all of the threads to enter the CHECK state. The

CHECK state is like the RUN state in that any executed transaction causes a reset message

to circulate around the ring. A thread that cycles through its list of transactions and finds

no enabled transactions sends a wait message to its neighbor and enters the WAIT state.

If the neighbor is in the WAIT state, it forwards the message. If a thread receives its own

wait message, then all of the threads are in the WAIT state and the termination condition

has been established. Upon receiving its own wait message, a thread sends a termination

message causing all threads to terminate.

6.5 Scheduler Evaluation

The utility of the reactive component model rests on the ability to execute reactive programs

effectively. The challenge, then, is to design and implement effective schedulers subject to the

constraints and limitations imposed by the model. The exercise of developing and evaluating

schedulers may suggest possible improvements to the model or provide evidence that core

features of the model resist efficient implementation. The definition of an effective scheduler

will vary by platform and problem domain. For example, embedded systems may prefer

a single-threaded scheduler with minimal memory requirements and power-awareness. Our

focus in this work is to make progress on general-purpose concurrent schedulers. We propose

the following metrics for the evaluation of a general-purpose scheduler:

Throughput: the number of transactions executed per second. Given the same system, a

scheduler with higher throughput is preferable to a system with lower throughput as

it is accomplishing more work per unit of time.

109

Latency: the amount of time between an transaction becoming enabled and being executed.

The goal in measuring the latency between a transaction becoming enabled and its

execution is to quantify the responsiveness of the scheduler. An interactive application

may prefer a scheduler that executes enabled transactions promptly to aid in providing

a good user experience or other benefit.

Utilization: the fraction of the CPUs used. Utilization is a measure of how efficiently the

scheduler is using the CPUs and can be used to quantify an improvement in throughput

or latency. For example, a 10% increase in throughput accompanied by a 10% increase

in utilization may be acceptable while a 10% increase in throughput with a 100%

increase in utilization may not be acceptable.

Both throughput and latency may be considered for individual transactions, or may be

aggregated over all transactions in the system.

Evaluation approach. We used two variants of the clock system from Chapter 3 to

evaluate the two scheduler implementations. The first variant is the fully-factored clock

system augmented with counters that cause termination10. In this system, there are three

components of interest: the Client, the Server, and the Counter. This system has three

transactions:

• Request - The client requests the time from the server. This involves the Client and

the Server.

• Response - The server responds with the time. This involves the Client, the Server,

and the Counter.

• Tick - The counter increments the current time. This involves the Counter.

This system will be denoted as the AsyncClock system.

Figure 6.2 shows a race graph for the AsyncClock system. Each node in the graph is a

transaction u ∈ T . Let acc(u) = pre(u) ∪ imm(u) ∪ mut(u). An edges exists between

10https://github.com/jrw972/rcgo/blob/master/samples/clock3.rc

110

https://github.com/jrw972/rcgo/blob/master/samples/clock3.rc

Request Response

Tick

Figure 6.2: Race graph for the AsyncClock system. Each node is a transaction. Nodes
sharing an edge cannot be executed concurrently due to potentially mutated shared state.

two nodes u, v ∈ T if race(acc(u), acc(v)). Nodes sharing an edge cannot be executed

concurrently due to potentially mutated shared state. Conversely, nodes that are not linked

by an edge can be executed concurrently. For the purpose of evaluating schedulers, the clock

system has the important characteristic that Request and Tick can be executed concurrently

while Response must be executed independently. Another useful feature of this system is

that each component has exactly one transaction, and thus, a work queue of instances may

also be viewed as a work queue of transactions.

The second variant is a simplified version of the clock system consisting of a Tick transaction

that increments the counter and a Request transaction that uses a getter to sample the

counter11. The counter creates a race between the two transactions so that they cannot be

executed concurrently. This system will be denoted as the SyncClock system.

For comparison, we implemented multi-threaded versions of the AsyncClock and SyncClock

systems using the POSIX threads library (pthreads). The AsyncClock implementation at-

tempts to preserve the spirit of the AsyncClock system by being as asynchronous as possible.

This implementation uses three threads corresponding to the Request, Response, and Tick

transactions. The Request and Response threads share a flag variable that is protected by

a mutex and condition variable to implement the asynchronous request/response protocol.

The Response and Tick threads share a counter variable that is protected by a mutex. The

SyncClock implementation attempts to preserve the spirit of the SyncClock system. In this

design, there is one thread sampling the counter while another thread is incrementing the

counter. The two threads synchronize access to the counter through a single mutex. For

convenience, experiments involving a pthreads implementation will be labeled Thread, exper-

iments involving the concurrent scheduler with a global instance work queue will be labeled

11https://github.com/jrw972/rcgo/blob/master/samples/clock4.rc

111

https://github.com/jrw972/rcgo/blob/master/samples/clock4.rc

Instance, and experiments involving the concurrent partitioned round-robin scheduler with

asynchronous locking and distributed termination will be labeled Partitioned.

The AsyncClock and SyncClock systems were executed 1,000 times to profile the performance

of each scheduler. The programs are instrumented with profiling code that records the total

execution time and timestamps for each transaction. The timestamps are stored in memory

and written after the scheduler terminates to avoid disruptions in timing due to output. The

Request and Tick transactions were limited to 10,000 executions. Thus, each SyncClock run

generates 20,000 data points. In the AsyncClock system, the relationship between Request

and Response causes Response to be executed 10,000 times as well. Thus, each AsyncClock

run generates 30,000 data points. The throughput for a single run is determined by dividing

the total number of transactions (20,000 or 30,000) by the total time used for execution. The

utilization was determined using the time utility and the number of context switches was

determined using the getrusage system call before and after the execution of the system.

The latency for each transaction is determined by computing the difference between the

transaction start time and the end time of the enabling transaction. For the SyncClock

system, this is Requestt+1−Requestt and Tickt+1−Tickt. For the AsyncClock system, this

is Requestt+1−Responset, Responset+1−Requestt, and Tickt+1−Tickt. For the SyncClock

system, 1, 000 × 20, 000 = 20, 000, 000 latency points were collected. For the AsyncClock

system, 1, 000× 30, 000 = 30, 000, 000 latency points were collected.

Placing all transactions in a run on a timeline according to their start times, we define

the entanglement of a run to be the number of adjacent transactions on the timeline that

were executed in different threads. The entanglement is used to measure the granularity

of the concurrency between the scheduler threads. Given that each run executes the same

number of transactions, a high entanglement indicates “fine” concurrency, i.e., threads are

executing transactions in parallel or execution is rapidly alternating between the threads,

while a low entanglement indicates “coarse” concurrency. Entanglement may be forced by the

scheduler, or may occur opportunistically, or not at all. The start time for threads influences

entanglement as an operating system may execute a thread to completion before starting

another thread. The garbage collection transactions are not included in the entanglement

calculation to facilitate comparison with the pthread implementations.

112

Machine Model: Lenovo G570 Laptop
Operating System: Ubuntu 14.04

Processor: Intel Pentium B960 2.20GHz
Architecture: 64-bit

Cores: 2
Memory: 4GB

Kernel: 3.13.0-77-generic #121-Ubuntu SMP
Compiler: g++ 4.8.4
C library: glibc 2.19

POSIX threads: glibc 2.19
C++ library: glibc++ 3.4.19

Table 6.1: Experimental environment used for scheduler testing

Table 6.1 describes the environment used to perform the scheduler experiments12. The times-

tamp resolution reported by the operating system was 1 ns. The Instance and Partitioned

schedulers were configured to use two threads. The Thread applications for the AsyncClock

and SyncClock systems were designed to use three and two threads, respectively. The raw

data for the experiments is available13.

12The version of the code used for this evaluation bears the tag “clock experiment2” and can be found at

https://github.com/jrw972/rcgo/releases/tag/clock experiment2.
13https://drive.google.com/open?id=0BwSc4YwTjv7TOHdVMENkU000WUU

113

https://github.com/jrw972/rcgo/releases/tag/clock_experiment2
https://drive.google.com/open?id=0BwSc4YwTjv7TOHdVMENkU000WUU

Figure 6.3: AsyncClock Thread Histogram of Throughput

Figure 6.4: AsyncClock Instance Histogram of Throughput

114

Figure 6.5: AsyncClock Partitioned Histogram of Throughput

AsyncClock results. Figures 6.3, 6.4, and 6.5 show histograms of the throughput for the

Thread, Instance, and Partitioned experiments, respectively. The throughput for the Thread

and Instance experiments appear to have “regular” distributions while the throughput for the

Partitioned experiment is “irregular.” Transactions are randomly and statically allocated to

execution threads in the Partitioned experiment. In the AsyncClock system, there are seven

transactions where three correspond to the Request, Response, and Tick transactions, and

the other four correspond to garbage collection transactions for the Client, Server, Counter,

and System components. For convenience, garbage collection transactions will be named

by the corresponding component. Thus, there are 27 = 128 mappings of transactions to

execution threads. Given the symmetry of threads, this results in 64 possible arrangements

which are shown in Appendix A in Table A.1. Some of these arrangements will place all

transactions in one thread, leading to improved or degraded performance, e.g., ‘A’. Some

arrangements will place the Request and Tick transactions in different threads, allowing the

potential concurrency among these transactions to be exploited, e.g., ‘B’. Some arrangements

will place the Tick and Counter transactions on different threads, creating lock contention,

115

e.g., ‘C’. Thus, the throughput for the Partitioned experiment is a mixture of distributions

corresponding to the different partitioning schemes.

Figure 6.6: AsyncClock Thread Utilization vs. Throughput

116

Figure 6.7: AsyncClock Instance Utilization vs. Throughput

Figure 6.8: AsyncClock Partitioned Utilization vs. Throughput

117

Figures 6.6, 6.7, and 6.8 show plots of utilization versus throughput for the Thread, Instance,

and Partitioned experiments, respectively. Most of the runs achieve a utilization greater than

100%. For the Instance and Partitioned experiments, there appears to be slight trend where

utilization decreases with increased throughput. This is most likely the result of locking be-

havior where runs that (randomly) experience better locking behavior simultaneously achieve

higher throughput and lower utilization due to less locking overhead.

Figure 6.9: AsyncClock Thread Voluntary Context Switches vs. Throughput

118

Figure 6.10: AsyncClock Instance Voluntary Context Switches vs. Throughput

Figure 6.11: AsyncClock Partitioned Voluntary Context Switches vs. Throughput

119

Figures 6.9, 6.10, and 6.11 show plots of voluntary context switches versus throughput for

the Thread, Instance, and Partitioned experiments, respectively. Voluntary context switches

include the situation where a thread blocks while waiting for a lock and is swapped out.

The Thread experiment appears to have a consistently high number of context switches.

This is expected since there are three threads competing for two processors. The Instance

experiment has fewer context switches and perhaps shows a slight trend where throughput

increases with fewer context switches. As previously stated, this is most likely the result of

locking behavior. The Partitioned experiment shows a strong trend of throughput increasing

with fewer context switches. Furthermore, the partitions appear to cluster together. For

example, all of the runs for partition ‘o’ of Table A.1 appear in the upper left of Figure 6.11,

while the runs for partition ‘t’ appear in the lower right. In partition ‘o’, thread 0 contains

the System, Counter, Tick, Request, and Response transactions while thread 1 contains

the Server and Client transactions. This mapping serializes the execution (the Request,

Response, and Tick transactions are on one thread) and is subject to contention arising from

the Server and Client transactions competing with the Request and Response transactions.

In partition ‘t’, thread 0 contains the System, Counter and Tick transactions while thread

1 contains the Server, Client, Response, and Request transactions. The only contention in

this mapping is between the Response transaction in thread 1 and the Counter and Tick

transactions in thread 0.

120

Figure 6.12: AsyncClock Thread Entanglement vs. Throughput

Figure 6.12 shows a plot of entanglement versus throughput for the Thread experiment.

The Thread experiment has a minimum entanglement of 20,000, which is caused by the

forced interleaving of the Request and Response threads, and a maximum entanglement of

30,000. Thus, the lowest band in Figure 6.12 corresponds to no entanglement with the

Tick thread. In these cases, the Linux thread scheduler executes the Request/Response

threads first and the Tick thread second (or vice versa). The generally low entanglement

shows that the Linux scheduler prefers to serialize the execution. This is reasonable given

that the Thread scheduler is subject to a performance hit caused by context switches as

previously described. The upper band suggests a bound on the allowed entanglement. One

explanation for this behavior is that the Linux scheduler may limit context switches, which

has the effect of limiting the entanglement in the Thread scheduler. Another explanation is

that the entanglement may be limited based on the threads starting at different times.

121

Figure 6.13: AsyncClock Instance Entanglement vs. Throughput

Figure 6.13 shows a plot of entanglement versus throughput for the Instance experiment.

The minimum entanglement is 0 and the maximum entanglement is 30,00014. This plot does

not appear to show a strong relationship between throughput and entanglement.

14Let Transaction(Thread) indicate that the transaction was executed by the corresponding thread. The

following pattern when repeated 5,000 times generates an entanglement of 30,000: Request(0) Tick(1) Re-

sponse(0) Request(1) Tick (0) Response (1).

122

Figure 6.14: AsyncClock Partitioned Entanglement vs. Throughput

Figure 6.14 shows a plot of entanglement versus throughput for the Partitioned experiment.

This plot has a band at 20,000 that contains roughly half of the samples (513/1000). These

correspond to arrangements where the Request and Response transactions are mapped to

different execution threads which forces an entanglement of 20,000. Half of the remaining

samples have no entanglement (246/1000). These correspond to arrangements where the

Request, Response, and Tick transactions are mapped to the same execution thread where

no entanglement is possible. The remaining quarter of the samples (241/1000) correspond

to arrangements where the Request and Response transactions are in one execution thread

while the Tick transaction is in the other. These show varying degrees of entanglement

with perhaps a slight trend toward increasing throughput with greater entanglement. This

is expected because the concurrency between Request and Tick can be exploited in these

arrangements.

123

Figure 6.15: AsyncClock Thread Histogram of Latency

Figure 6.16: AsyncClock Instance Histogram of Latency

124

Figure 6.17: AsyncClock Partitioned Histogram of Latency

Figures 6.15, 6.16, and 6.17 show histograms of the latency for the Thread, Instance, and

Partitioned experiments, respectively. All plots of latency use a logarithmic x-axis, as the

latency distributions have very long tails. For the Thread experiment, the mean latency of

the transactions are as follows:

Tick 0.11769us

Request 5.30299us

Response 5.63980us

Thus, the distribution on the left in Figure 6.15 corresponds to the latency of the Tick

transaction while the distribution on the right corresponds to the latency of the Request

and Response transactions. In the Thread experiment, Tick transactions can be executed in

quick succession as they are in a tight loop. For the Instance experiment, the mean latency

of the transactions are as follows:

Tick 5.22393us

Request 2.83083us

Response 2.58799us

125

The Instance scheduler tends to serialize the execution of transactions for the AsyncClock

system which has the effect of minimizing race conditions. Thus, the Tick transaction has

roughly twice the latency of the Request and Response transactions since the Tick transaction

is always enabled while the Request and Response transactions are enabled by each other.

For the Partitioned experiment, the mean latency of the transactions are as follows:

Tick 2.49278us

Request 2.31450us

Response 2.06478us

The work-conserving nature of the Partitioned scheduler allows it to achieve a lower average

latency for all transactions when compared to the Instance scheduler.

Figure 6.18: AsyncClock Throughput

Figure 6.18 shows a box plot of the throughput for the Thread, Instance, and Partitioned

experiments. The quantiles of the throughput in transactions/s for each scheduler are as

follows:

126

Scheduler 0% 25% 50% 75% 100%

Partitioned 246,370.0 472,679.2 576,411.0 664,042.5 862,717.0

Instance 355,158.0 386,067.8 395,796.0 405,083.8 476,759.0

Thread 224,107.0 256,876.0 269,193.5 282,329.0 414,293.0

The work-conserving nature of the Partitioned scheduler allows it to achieve a higher through-

put than the Instance scheduler, and its ability to avoid context switches allows it to achieve

a higher throughput than the Thread scheduler. However, the results also demonstrate the

variability in the throughput due to the many modes of partitioning. Thus, the Partitioned

scheduler could be improved by using the race graph to avoid “bad” partitions.

Figure 6.19: AsyncClock Latency

Figure 6.19 shows a box plot of the latency for the Thread, Instance, and Partitioned exper-

iments. The quantiles of the latency (in ns) for each scheduler are as follows:

Scheduler 0% 25% 50% 75% 100%

Partitioned 293 1,075 1,754 2,861 10,296,400

Instance 423 1,851 2,645 4,569 8,028,100

Thread 52 160 4,352 5,051 7,791,400

127

The Thread scheduler achieves the lowest latency via the Tick transaction due to its work-

conserving nature and optimized locking scheme.

Both the Instance and Partitioned schedulers contain transactions for performing garbage

collection. These transactions do not actually perform any work since none of the trans-

actions in the AsyncClock system allocate memory. The Instance scheduler executed an

average of 33,053 garbage collection actions per run while the Partitioned scheduler exe-

cuted an average of 97,078 garbage collection actions per run. The excessive number of

collections performed by the Partitioned scheduler shows a potential problem between the

garbage-collection-as-an-action idea and work conserving schedulers, as a work conserving

scheduler can always find more work to do in garbage collection attempts. Ideally, a sched-

uler would be designed to not even select a garbage collection action until it has a high

probability of actually collecting garbage.

128

Figure 6.20: SyncClock Thread Histogram of Throughput

Figure 6.21: SyncClock Instance Histogram of Throughput

129

Figure 6.22: SyncClock Partitioned Histogram of Throughput

SyncClock results. Figures 6.20, 6.21, and 6.22 show histograms of the throughput for the

Thread, Instance, and Partitioned experiments, respectively. The throughput curves of the

Thread and Instance experiments appear to be combinations of two or three distributions. As

in the AsyncClock experiments, the throughput for the Partitioned experiment is a mixture

of distributions arising from different partitioning schemes. In the SyncClock system, there

are two components and two transactions resulting in 8 possible partitions. The list of

partitions is given in Appendix A in Table A.2.

130

Figure 6.23: SyncClock Thread Utilization vs. Throughput

Figure 6.24: SyncClock Instance Utilization vs. Throughput

131

Figure 6.25: SyncClock Partitioned Utilization vs. Throughput

Figures 6.23, 6.24, and 6.25 show plots of utilization versus throughput for the Thread, In-

stance, and Partitioned experiments, respectively. The utilization for the Thread experiment

decreases with increasing throughput. This suggests that the Linux scheduler is serializing

the execution of the threads which decreases utilization while avoiding lock contention which

results in increased throughput. Most of the runs for the Instance and Partitioned experi-

ments achieve a utilization greater than 100% while a number of runs in the Thread experi-

ment do not. The Instance experiment perhaps shows a weak trend of increased utilization

with throughput while the Partitioned experiment shows a trend of decreased utilization

with throughput.

132

Figure 6.26: SyncClock Thread Voluntary Context Switches vs. Throughput

Figure 6.27: SyncClock Instance Voluntary Context Switches vs. Throughput

133

Figure 6.28: SyncClock Partitioned Voluntary Context Switches vs. Throughput

Figures 6.26, 6.27, and 6.28 show plots of voluntary context switches versus throughput for

the Thread, Instance, and Partitioned experiments, respectively. All show a trend where

throughput increases with decreasing context switches. Both the Thread and Instance ex-

periments have a threshold where high throughput appears to require minimizing the number

of context switches. The plot for the Partitioned experiment clearly shows an inverse rela-

tionship between throughput and context switches.

134

Figure 6.29: SyncClock Thread Entanglement vs. Throughput

Figure 6.30: SyncClock Instance Entanglement vs. Throughput

135

Figure 6.31: SyncClock Partitioned Entanglement vs. Throughput

Figures 6.29, 6.30, and 6.31 show plots of entanglement versus throughput for the Thread,

Instance, and Partitioned experiments, respectively. The maximum entanglement for the

SyncClock system is 20,000. The plot of entanglement for the Thread experiment resembles

the plots of utilization and context switches. The samples appear to be divided between

concurrent (high entanglement, high context switch) and serial executions (low entanglement,

low context switch). For this system, it seems that it is more efficient to serialize the execution

of the threads than to execute the threads concurrently and suffer context switches.

The plot of entanglement for the Instance experiment shows a different trend where through-

put increases with entanglement. Thus, the Instance experiment achieves high throughput

when execution alternates between the threads. The entanglement for the Partitioned exper-

iment appears to be a combination of three distributions. The vertical line on the left consists

of samples from the ‘G’ partition which has maximal inter-thread conflicts and minimal op-

portunities for concurrent execution. The horizontal line on the bottom (no entanglement)

consists of samples from the ‘A’, ‘D’, ‘E’, and ‘H’ partitions which map the Tick and Re-

quest transactions to the same thread. The execution is serialized with varying degrees of

interference from the garbage collection transactions. The other samples contain the ‘B’,

136

‘C’, and ‘F’ partitions which appear to show increasing throughput with entanglement. The

‘F’ partition has minimal inter-thread conflicts with maximal opportunities for concurrent

execution.

Figure 6.32: SyncClock Thread Histogram of Latency

137

Figure 6.33: SyncClock Instance Histogram of Latency

Figure 6.34: SyncClock Partitioned Histogram of Latency

138

Figures 6.32, 6.33, and 6.34 show histograms of the latency for the Thread, Instance, and

Partitioned experiments, respectively. All plots of latency use a logarithmic x-axis, as the

latency distributions have very long tails. For the Thread experiment, the mean latency of

the transactions are as follows:

Request 72.952ns

Tick 207.145ns

The Request transaction does nothing more than acquire and release a lock which may ex-

plain its reduced latency. For the Instance experiment, the mean latency of the transactions

are as follows:

Request 1,085.32ns

Tick 1,070.57ns

For the Partitioned experiment, the mean latency of the transactions are as follows:

Request 4,117.71ns

Tick 4,069.06ns

Figure 6.35: SyncClock Throughput

139

Figure 6.35 shows a box plot of the throughput for the Thread, Instance, and Partitioned

experiments. The quantiles of the throughput in transactions/s for each scheduler are as

follows:

Scheduler 0% 25% 50% 75% 100%

Partitioned 146,788.0 439,051.0 558,954.5 711,073.8 1,919,680.0

Instance 600,871.0 862,315.8 1,007,265.0 1,095,980.0 1,150,600.0

Thread 2,005,940.0 4,308,048.0 5,382,440.0 5,983,532.0 10,428,200.0

The Thread scheduler is clearly the best in terms of throughput. The best partitions of

the Partitioned scheduler almost achieve the worst performance of the Thread scheduler.

In aggregate, however, the Instance scheduler appears to be better than the Partitioned

scheduler.

Figure 6.36: SyncClock Latency

Figure 6.36 shows a box plot of the latency for the Thread, Instance, and Partitioned exper-

iments. The quantiles of the latency (in ns) for each scheduler are as follows:

140

Scheduler 0% 25% 50% 75% 100%

Partitioned 293 636 2,469 4,835 8,100,990

Instance 442 668 798 1,254 8,029,550

Thread 27 59 80 160 2,736,960

The Thread scheduler has the best latency by an order of magnitude. This is unsurprising

given the efficiency of the Thread implementation.

6.6 Summary

Perhaps the most interesting part of the implementation of the rcgo run-time system is the

scheduler. Fairness, safety, and responsibility are identified as the three essential require-

ments for any scheduler and we illustrate how these may be accomplished in a variety of

designs. Two multi-threaded schedulers were implemented. The Instance scheduler is based

on a shared work queue of instances while the Partitioned scheduler is based on partitioning

transactions among different scheduler threads. We used throughput, latency, and utiliza-

tion as metrics for evaluating schedulers for reactive components and collected data for the

Instance and Partitioned schedulers by executing the AsyncClock and SyncClock systems.

The reactive component schedulers were then compared to custom implementations of the

same systems using the pthreads library.

The AsyncClock and SyncClock experiments demonstrate both the viability of reactive com-

ponents as an event system and that more work is necessary to improve the design and

implementation of the run-time system. The motivation for events was to facilitate (logical)

concurrency while avoiding the overhead of context switching associated with assigning each

task to a thread. The performance of the Partitioned scheduler over the Thread implementa-

tion for the AsyncClock system demonstrates this idea. As was previously mentioned, events

can be combined with multi-threading but care must be taken to ensure proper synchroniza-

tion. In the reactive component model, the burden of correct synchronization is placed on

the scheduler instead of the developer.

The AsyncClock system is illustrative in that it shows the advantage of events over threads

but is nevertheless unrealistic as it intentionally overloads the system. The SyncClock system

141

represents a scenario in which there are adequate resources for each thread. In this situation,

the Instance and Partitioned schedulers perform an order of magnitude worse than the

Thread implementation. This prompts the question: can reactive components be as efficient

as threads? While we cannot answer this question definitively, the act of converting a reactive

component program to a threaded program does provide evidence that it may be possible to

make reactive components as efficient as threads. The procedure for converting a reactive

component program to a threaded program involves 1) creating a reader/writer lock for

each component instance, 2) creating a thread for each transaction, 3) creating a condition

variable and mutex for each precondition, 4) creating a critical section for each transaction,

and 5) signaling affected transactions after the critical section. It seems feasible that this

procedure can be automated. Thus, a system of reactive components can be converted to

threads or scheduled as events depending on the resources available and the nature of the

transactions in the system, but doing so is left for future work.

142

Chapter 7

Conclusions and Future Work

A reactive system is characterized by “ongoing interactions with its environment” [66]. Asyn-

chronous concurrency is a feature of reactive systems that makes them inherently difficult

to develop. Reactive systems are already used in various forms of critical infrastructure and

the number, diversity, and scale of reactive systems is expected to increase given the con-

tinuing proliferation of embedded, networked, and interactive systems. Decomposition and

composition are two complementary techniques that are helpful when designing and imple-

menting reactive systems, especially given such increases in complexity. We argue that the

dominant techniques based on multiple sequential threads/processes thwart decomposition

and composition and thus contribute to the accidental complexity associated with reactive

system development.

Specifically, we believe that a model for reactive systems should facilitate principled composi-

tion and decomposition. Beyond defining units of composition and a means of composition, a

model for reactive systems should facilitate practical techniques like recursive encapsulation

and behavior abstraction through interfaces. Composition should be compositional meaning

that the properties of a unit of composition can be stated in terms of the properties of its

constituent units of composition. Finally, units of composition should be subject to substi-

tutional equivalence meaning that the definition of a unit of composition can be substituted

for its use and vice versa. Substitutional equivalence allows a complex system to be reduced

to a single unit and a complex unit to be decomposed into a system of simpler units.

In Chapter 3, we presented the reactive component model for reactive systems. The reactive

component model is based on models like UNITY and I/O Automata in that computation

is carried out via a sequence of atomic state transitions selected non-deterministically. To

143

these models, reactive components adds facilities for recursive encapsulation and interfaces

that facilitate third-party composition via explicit binding. A reactive component is a set

of state variables, atomic state transitions, and ports. The state variables of a reactive

component may only be updated by the transitions associated with that component to

ensure compositionality. Ports have passive and active sides. Push ports allow a transition

in a component to synchronously induce a transition in another component while pull ports

allow components to export and access values and state. An action is a transition with

a precondition that can be executed by the scheduler. A reaction is a passive push port

and transition that can be linked to an active push port to form an atomic transition that

spans multiple components. A getter is a passive pull port and an expression that allows

the state of a component to be accessed in a safe way. A transition is divided into two

phases called the immutable phase and the mutable phase. Components may not change

state in the immutable phase, which allows their state to be shared via temporary values.

State is updated from the temporary values in the mutable phase of a transition. This

division facilitates the composition of transitions in a principled way as it provides a clear

interpretation of the state of a component before and after a transition. This, in turn, allows

the properties derived from the state variables and transitions in one component to be linked

to the properties of other components to facilitate compositional reasoning.

The interface-based composition semantics of reactive components introduces the possibility

of non-deterministic transitions. A non-deterministic state transition occurs when a state

variable is updated in disparate ways in different sub-transitions. The detection of non-

deterministic state transitions arising from composition is generally undecidable. However,

allowing a reactive component instance to serve as a proxy for its state variables reduces

the problem of detecting non-deterministic transitions to simple graph and set theoretic

problems.

Practicality was one of our goals when designing the reactive component model. That is, we

intended it to be implemented and used to design and build real-world systems in an effort

to reduce the accidental complexity associated with reasoning about a system using one set

of semantics and implementing it using another. Thus, we presented the rcgo programming

language for reactive components in Chapter 4. We adopted the Go programming language

as the basis for rcgo and added syntax and semantics to support the elements of the reac-

tive component model. The major challenge when designing the language was supporting

144

reference and move semantics while preserving the isolation of state between reactive compo-

nents. Reference semantics are important as they allow the construction of arbitrary linked

data structures and move semantics are important for efficient communication between reac-

tive components. Supporting these features required techniques from race-free programming

languages. Thus, we added intrinsic and indirection mutability attributes to pointer types.

Immutable indirection mutability is used to enforce the immutable phase of state transitions

while foreign indirection mutability prevents pointers referring to a component’s state from

being saved by another component. To facilitate move semantics, we introduced a trans-

ferrable heap type which facilitates the construction and transfer of self-contained linked

data structures.

Chapter 5 described the implementation of key features for the rcgo run-time system. The

two major assumptions leveraged throughout the design of the run-time system are 1) com-

ponents instances serve as a proxy for their state variables and 2) the reactive systems

being implemented are static meaning that the number and configuration of the reactive

components in the system are fixed. With these two assumptions we present an algorithm

that checks for sound composition. The algorithm treats each transaction, i.e., a composed

transition, as a graph with nodes corresponding to actions, reactions, activate statements,

and push ports. This algorithm checks for non-deterministic transactions by ensuring that

the graph contains no cycles and that a component instance participates in at most one

non-empty activate statement.

The execution of a transaction requires two passes over a transaction graph corresponding to

the immutable phase and mutable phase. The main challenge when computing the immutable

phase is recording the context of each action/reaction that executes an activate statement

so that its continuation may be executed in the mutable phase. To accomplish this, we

created the novel synchronized two-phase calling convention which captures the context of

an activate statement using an ordinary call stack. The significance of this approach is that

transactions can be executed efficiently without allocating a stack frame on the heap.

The interpreter for rcgo uses garbage collection to reclaim memory. Garbage collection avoids

dangling pointers which could threaten the isolation of state among component instances.

All component state in rcgo may be attributed to exactly one reactive component instance.

145

This admits an embarrassingly parallel garbage collection algorithm, as garbage collection

can be performed on each component in parallel.

The schedulers described in Chapter 6 are the most significant parts of the rcgo implemen-

tation. A scheduler has the responsibility of executing transactions with fairness. The

challenge when designing and implementing a scheduler is to convert the logically serial ex-

ecution of the reactive component model to physically concurrent execution. To do this, the

scheduler utilizes the composition analysis to determine which transactions may be executed

in parallel. We present two scheduler implementations: one is based on a globally shared

work queue while the other is based on a static partitioning of the transactions. To eval-

uate the scheduler, we simulate a number of rounds in a simple request-response protocol.

In the first design, the rcgo schedulers outperform a custom multi-threaded implementation

due to excessive context switching in the multi-threaded program. This suggests that reac-

tive components are viable as a concurrent event-based approach to reactive systems. The

request-response protocol was then rewritten to be more conducive to the test hardware. The

results of this experiment show that additional work is required to raise the performance of

the rcgo interpreter to be on par with optimized libraries for multi-threading.

7.1 Conclusions

The reactive component model is viable for designing and implementing reactive systems.

The main goal of this work is to reduce the accidental complexity associated with the design

and implementation of reactive systems. We believe the source of this accidental complexity

is the mismatch between the semantics of reactive systems and the sequential multi-threaded

techniques used to implement them. Furthermore, we observe that sequential multi-threaded

techniques fail to adequately manage complexity in the face of composition and decompo-

sition. There are three main ideas in the reactive component model that make it a viable

solution to these problems. First, the reactive component model addresses the semantics

of reactive systems by interpreting computation in reactive systems as a non-deterministic

sequence of atomic events which have the added benefit of composing well. Second, the

reactive component model uses encapsulation to guarantee compositionality. The state of

146

each reactive component instance may only be manipulated by the transitions of that compo-

nent and therefore properties established from the transitions may never be violated through

subsequent composition. This principle extends to constellations of interacting (composed)

components that are themselves encapsulated. Third, compound state transitions spanning

multiple components are formed using parallel composition instead of sequential composi-

tion. Parallel composition as expressed through the immutable phase and mutable phase

concepts in the reactive component model provides a clear interpretation of compound atomic

transactions.

The semantics of reactive components can be checked efficiently. The three main checks are

1) the enforcement of immutability during the immutable phase, 2) prevention of shared

state, and 3) the detection of non-deterministic transitions. The first two properties are

enforced through the type system and type checking algorithm. The detection of non-

deterministic state transitions can only be performed once the set of concrete instances is

known. The current algorithm leverages the static system assumption to create concrete

transactions from compound transitions. These transactions can be checked in polynomial

time. The key point is that the reactive component model does not rest on assumptions that

cannot be realized in practice, as all of these algorithms have been implemented.

There is evidence that a run-time system for reactive components could be made efficient

enough to compete with optimized multi-threaded approaches. A common approach to im-

plementing high-performance reactive systems is to use a number of concurrent event loops

which maximizes the use of available cores while minimizing context switches. The sched-

uler implementations in Chapter 6 are examples of this kind of design. The efficacy of this

approach is seen in the first experiment where the reactive component schedulers outper-

form a multi-threaded implementation due to context switching. The second experiment

demonstrates that additional work is necessary to improve the performance of the reactive

component schedulers to make them comparable to custom multi-threaded implementations.

147

7.2 Future Work

This dissertation has presented the reactive component model as an alternative to sequential

threads for designing and implementing reactive systems. As a model, sequential thread-

based computation is firmly entrenched in many areas including hardware (synchronous se-

quential processors), operating systems (process and thread abstractions), and programming

languages. Thus, we may consider possibilities such as hardware architectures specifically

designed for reactive components and operating systems where the main abstraction is the

reactive component or transaction instead of the thread. These topics are quite ambitious

and additional work is required before these topics may be adequately addressed. First, we

must generalize the reactive component model for dynamic systems (Section 7.2.1). This is

necessary as an operating system must be able to load and configure reactive components

and many reactive applications are naturally formulated using dynamic configurations. Sec-

ond, we must consider the problem of scheduling transactions, as the scheduler will have a

significant impact on the performance of reactive component applications (Section 7.2.2).

7.2.1 Dynamic Systems

Two assumptions were necessary to make the analysis of systems of reactive components

tractable. First, we assume that a reactive component instance is a proxy for its state

variables. Pull ports and getters reduce the impact of this assumption as a designer can

decompose at will which yields more component instances for fine-grained analysis. Second,

we assume that a reactive system has a fixed number of component instances in a fixed

configuration. While we argue that many systems of interest have this property, removing

or weakening this assumption would make the reactive component more general and more

applicable to areas like enterprise level distributed systems and cloud computing.

The first level of support with regards to dynamic systems is adding support for dynamic sets

of components and bindings. To illustrate, consider how the implementation of a TCP or

UDP stack could use a dynamic array or set of components. The various ports in TCP/UDP

represent independent data flows that may be processed in parallel. To exploit this paral-

lelism in the reactive component model, each port should be processed by a unique reactive

148

component instance. It is theoretically possible to declare a component instance for the

65,536 ports defined in the protocol. However, doing so in practice would be wasteful as

only a subset of ports are active at any given time. Thus, we require the ability to dynami-

cally allocate and bind component instances.

Models like UNITY and I/O Automata use parameterized models to reason about systems

consisting of an arbitrary number of program instances. For the TCP/UDP port example,

these models would assume that all 65,536 ports exist and are sent activate and deactivate

messages as necessary. From an implementation perspective, it may be possible to use this

idea and automatically allocate and deallocate resources for component instances when they

receive activate and deactivate messages.

Providing support for dynamic sets of components and bindings requires further extensions to

the model, language, and implementation. The major extensions to the model would include

adding support for dynamic arrays or sets of components and parameterized bindings that

allow a component to interact with a dynamically allocated component. The next step then

would be mapping the extended semantics into the rcgo programming language. Supporting

dynamically allocated components and bindings in the implementation also would require

extending the check for sound composition and providing run-time support for the features in

the language. Checking for sound composition in a system with dynamic sets of components

would require the run-time system to perform an inductive proof over all sets of dynamic

components in the system. That is, the run-time system must prove that all transactions

remain deterministic when any set of components increases in size.

The dynamic sets of components and bindings described so far are subject to static analysis

as the dimensions of variability are expressed in the code. The next level of support would

involved unplanned variability where new component types and instances are loaded and

bound. Supporting this level of dynamism requires support for programmatic loading and

binding including a service discovery mechanism that allows components to publish their

existence and other components to find them. In terms of enforcing the reactive component

model, the check for sound composition must be performed at runtime and constitutes a form

of admission control. Thus, additional work is needed to determine if the sound composition

check can be modified for use in an on-line setting or if additional restrictions must be placed

on the model to ensure an efficient on-line check.

149

7.2.2 Scheduling

There are three main areas that may be addressed to improve the performance of the Instance

and Partitioned schedulers. First, we may attempt to improve the efficiency of the schedulers

through better design and implementation. The evaluation in Chapter 6 can serve as a basis

for future improvements. Second, we may attempt to reduce the overhead of the Linux

scheduler. In Linux, the threads made available via the pthreads library are scheduled by

the Linux kernel. The Instance and Partitioned schedulers, then, are themselves scheduled

by the Linux kernel. Thus, it may be necessary to implement a scheduler for reactive

components at the kernel level to restrict this source of overhead. Third, we may move from

interpretation to compilation. To test this idea, we timed a loop to sum the numbers in the

range [0, 1,000,000) and averaged it over 1,000 runs for a C++ implementation and a reactive

component implementation. The average time for the reactive component implementation

was 0.1304896 seconds and the average time for the C++ implementation was 0.0009984909

seconds; a speed-up factor of 131. This is very much a “back of the envelope” calculation;

the actual improvement in moving from interpretation to compilation may be less than this.

We selected the AsyncClock and SyncClock systems to evaluate the schedulers because they

are small enough to understand but complex enough to show interesting behavior. The

actual computation performed by these systems is minimal, i.e., setting Boolean flags and

incrementing counters. Most likely, these operations can be performed in a single clock cycle

(for compiled programs). One obvious direction for future work, then, is to experiment

with complex transactions and varied workloads. However, it is important to consider the

possibility that real workloads will contain computationally simple transactions such as those

found in the clock systems. Furthermore, one of the motivations for decomposing systems is

to break up complex systems into smaller, reusable, and easier to understand systems. The

results in Chapter 6 demonstrate the diminishing return where the transactions become

so simple that execution is dominated by overhead, i.e., it is more efficient to serialize

execution than execute actions in parallel. Simple transactions are a foreseeable consequence

of decomposition and designers should not be penalized for decomposing complex systems.

Thus, one of the goals of scheduler design is to push the horizon of the diminishing return

as far as possible. When coupled with responsiveness, the desired property in a scheduler is

one whose throughput does not diminish with entanglement.

150

One goal for a reactive component scheduler may be to optimize the evaluation of precon-

ditions. Two possible goals are to reduce the number of times a precondition is evaluated

(lazy vs. eager) or to reduce the overhead of evaluating a single precondition. The reactive

component model allows arbitrary Boolean expressions to be used as preconditions. One idea

may be to eliminate preconditions and replace them with explicit scheduling instructions,

but this may become tedious and error prone. A compromise solution may involve restrict-

ing the complexity of preconditions to simple Boolean expressions, i.e., with no function

calls. With this restriction, it may become possible to determine which activate statements

enable/disable a transaction.

To be safe, all concurrent schedulers require synchronization to protect the mutable state in

a transaction. The approach taken by the oblivious Instance and Partitioned schedulers is to

acquire locks protecting the state of each involved component before executing a transaction.

The Partitioned scheduler demonstrates how asynchronous locking can be used to create a

work-conserving scheduler. As indicated by the results in Chapter 6, a major challenge is to

make synchronization as efficient as possible.

Another direction for future work is to explore options that accomplish synchronization

without locking or with minimal locking. Partitioning combined with non-preemption may

create opportunities to synchronize without locking. Let u be a transaction assigned to a

specific scheduler thread and let I be the set of instances involved in u. Furthermore, let

all transactions involving any component in I be mapped to the same scheduler thread (the

single-threaded schedulers described in Chapter 6 do this by virtue of their design). In this

scenario, no locks are needed for a safe execution of u because all other transactions that

could change the relevant component state are excluded from executing due to the non-

preemptive nature of the scheduler. This phenomenon is illustrated graphically by coloring

the nodes in a race graph according to the thread to which they have been assigned. A

transaction whose immediate neighbors all share the same color as the transaction itself

can execute without acquiring locks. This suggests that algorithms that detect clusters of

transactions in the race graph may be used to optimize the assignment of transactions to

scheduler threads.

Locking also may be optimized by performing operations on the race graph. For example,

adjacent transactions in the race graph can be merged and executed under the same set of

151

locks. This procedure can be used to create complex transactions that amortize the locking

overhead. Most likely, the merging algorithm would make use of some heuristic that mea-

sures the perceived benefit of merging the transactions. For example, the edges in the race

graph could be weighted with the Jacquard Index of the instance sets, i.e., the edges are

weighted with a score indicating that the set of locks are similar. The merging algorithm

must balance the goal of simplifying the locking with the goal of exploiting concurrency. For

example, merging the Request and Response transactions eliminates the potential concur-

rency between the Request and Tick transactions in the AsyncClock system.

Similarity between instance sets suggests that locks may be eliminated by combining them.

To illustrate, the AsyncClock system contains three locks corresponding to the three com-

ponents. Suppose that the same lock is used to protect both the Client and the Server. This

reduces the number of locks needed to execute the Request transaction from two to one and

the number of locks needed to execute the Response transaction from three to two.

The challenges associated with locking invite us to step back and consider the fundamental

aspects of the problem that necessitate a locking protocol. The scheduler designs put forth so

far are distributed in the sense that each scheduler thread is making an independent decision

about the next transaction to execute. Locking is the means by which the scheduler thread

discovers the decisions made by the other scheduler threads to determine if the transaction

under consideration is compatible with the transactions already chosen by the other threads.

The locking protocol becomes unnecessary if the decisions made by the other threads are

already available, i.e., a knowledgeable scheduler. This suggests that orchestration may

be used to ensure safety in a multi-threaded scheduler without locking. In this model,

a manager thread assigns transactions to scheduler threads who execute the transactions

without acquiring locks. The primary job of the manager thread is to enforce safety by

only allowing the concurrent execution of disconnected transactions in the race graph. This

approach may make use of a dedicated manager thread (Producer-Consumer) or use the

Leader-Follower pattern [84]. An efficient implementation of the scheduler state, especially

if it is shared through the Leader-Follower pattern, is a concern for this kind of scheduler.

For systems with a fixed set of transactions, a compiler may be able to generate a scheduling

automaton by enumerating the scheduler states S, pruning unsafe states and transitions

according the rules outlined in Section 6.1, pruning transitions to ensure fairness, etc. This

formulation also may have the advantage of yielding compact scheduler state.

152

Cache awareness and migration are two concerns that reactive component schedulers share

with thread schedulers. Cache awareness attempts to improve the performance of a system

by scheduling a computation on the same processor core because the state required for the

computation may already be available in the cache. Thus, a reactive component scheduler

may attempt to create an affinity between a transaction and a scheduler thread or processor

core. Partitioning on the basis of shared component state satisfies this implicitly. Migration

reassigns a computation to a different core to balance the load among the cores or free a

core so that it may be shut down. The challenge with respect to migration is to define load

imbalance in a meaningful way. The migration algorithm will most likely be expressed as

an optimization problem that attempts to find a global optimum for the throughput and

latency of each action.

Another design dimension for a reactive component scheduler is preemption. The main

use of preemption is to share a physical core among many computations that are ready to

execute. A reactive component scheduler may wish to preempt a long-running transaction

to execute other enabled transactions. A preemptive scheduler for reactive components can

take advantage of existing work on thread preemption.

7.3 Broader Impacts

Reactive systems have had a profound impact on society and will continue to impact society

for the foreseeable future. Some reactive systems like the Internet and smart phones have

high visibility while others, like the army of micro-controllers present in a modern automobile

or a home appliance, are less conspicuous but nevertheless help us with our daily activities

and contribute to our safety and comfort. Some reactive systems, like pace makers, life

support machines, and robotic surgical instruments, even have a direct impact on our health

and well being. The goal of this research is to ensure the quality and reliability of reactive

systems in the face of predicted increases in size, diversity, and complexity.

153

Appendix A

Partition Tables

Symbol System Server Counter Client Response Tick Request Count

A 0 0 0 0 0 0 0 17

B 0 0 0 0 0 0 1 16

C 0 0 0 0 0 1 0 20

D 0 0 0 0 0 1 1 12

E 0 0 0 0 1 0 0 11

F 0 0 0 0 1 0 1 17

G 0 0 0 0 1 1 0 11

H 0 0 0 0 1 1 1 12

I 0 0 0 1 0 0 0 13

J 0 0 0 1 0 0 1 6

K 0 0 0 1 0 1 0 17

L 0 0 0 1 0 1 1 20

M 0 0 0 1 1 0 0 16

N 0 0 0 1 1 0 1 25

O 0 0 0 1 1 1 0 14

P 0 0 0 1 1 1 1 12

Q 0 0 1 0 0 0 0 14

R 0 0 1 0 0 0 1 11

S 0 0 1 0 0 1 0 9

T 0 0 1 0 0 1 1 15

U 0 0 1 0 1 0 0 20

V 0 0 1 0 1 0 1 12

W 0 0 1 0 1 1 0 18

154

Symbol System Server Counter Client Response Tick Request Count

X 0 0 1 0 1 1 1 16

Y 0 0 1 1 0 0 0 16

Z 0 0 1 1 0 0 1 16

a 0 0 1 1 0 1 0 18

b 0 0 1 1 0 1 1 21

c 0 0 1 1 1 0 0 16

d 0 0 1 1 1 0 1 9

e 0 0 1 1 1 1 0 14

f 0 0 1 1 1 1 1 11

g 0 1 0 0 0 0 0 16

h 0 1 0 0 0 0 1 17

i 0 1 0 0 0 1 0 12

j 0 1 0 0 0 1 1 20

k 0 1 0 0 1 0 0 16

l 0 1 0 0 1 0 1 16

m 0 1 0 0 1 1 0 13

n 0 1 0 0 1 1 1 17

o 0 1 0 1 0 0 0 25

p 0 1 0 1 0 0 1 22

q 0 1 0 1 0 1 0 13

r 0 1 0 1 0 1 1 14

s 0 1 0 1 1 0 0 10

t 0 1 0 1 1 0 1 11

u 0 1 0 1 1 1 0 27

v 0 1 0 1 1 1 1 16

w 0 1 1 0 0 0 0 12

x 0 1 1 0 0 0 1 18

y 0 1 1 0 0 1 0 17

z 0 1 1 0 0 1 1 12

0 0 1 1 0 1 0 0 17

1 0 1 1 0 1 0 1 7

2 0 1 1 0 1 1 0 11

155

Symbol System Server Counter Client Response Tick Request Count

3 0 1 1 0 1 1 1 17

4 0 1 1 1 0 0 0 19

5 0 1 1 1 0 0 1 19

6 0 1 1 1 0 1 0 16

7 0 1 1 1 0 1 1 17

8 0 1 1 1 1 0 0 21

9 0 1 1 1 1 0 1 22

@ 0 1 1 1 1 1 0 22

$ 0 1 1 1 1 1 1 13

Table A.1: Partitions for the AsyncClock system. The

Symbol column contains the symbol used to represent

this partition on plots. The System, Server, Counter, and

Client columns indicate the thread used for the garbage

collection action for the respective component. The Re-

sponse, Tick, and Request columns indicate the thread

used for the respective transaction. The Count column

indicates the number of samples for this partition.

Symbol System Counter Request Tick Count

A 0 0 0 0 117

B 0 0 0 1 137

C 0 0 1 0 119

D 0 0 1 1 114

E 0 1 0 0 117

F 0 1 0 1 140

G 0 1 1 0 135

H 0 1 1 1 121

156

Symbol System Counter Request Tick Count

Table A.2: Partitions for the SyncClock system. The

Symbol column contains the symbol used to represent

this partition on plots. The System and Counter columns

indicate the thread used for the garbage collection action

for the respective component. The Request and Tick

columns indicate the thread used for the respective trans-

action. The Count column indicates the number of sam-

ples for this partition.

157

References

[1] Clojure. http://clojure.org/.

[2] Go. https://golang.org/.

[3] Ioa language and toolset. http://groups.csail.mit.edu/tds/ioa/.

[4] Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
High-Level Debugging, Pacific Grove, California, March 20-23, 1983. Software engi-
neering notes. Association for Computing Machinery, 1983.

[5] C++11. ISO/IEC 14882:2011, September 2011.

[6] Martin Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe locking:
Static race detection for java. ACM Trans. Program. Lang. Syst., 28(2):207–255, March
2006.

[7] A. Adya, J. Howell, M. Theimer, W.J. Bolosky, and J.R. Douceur. Cooperative task
management without manual stack management. In Proceedings of the 2002 Usenix
ATC, 2002.

[8] G.A. Agha. Actors: a model of concurrent computation in distributed systems. MIT
Press, 1986.

[9] G.R. Andrews and F.B. Schneider. Concepts and notations for concurrent program-
ming. ACM Computing Surveys (CSUR), 15(1):3–43, 1983.

[10] J. Armstrong, R. Virding, C. Wikstr, M. Williams, et al. Concurrent programming in
erlang. 1996.

[11] J. Backus. Can programming be liberated from the von neumann style?: a functional
style and its algebra of programs. Communications of the ACM, 21(8):613–641, 1978.

[12] David F. Bacon, Robert E. Strom, and Ashis Tarafdar. Guava: A dialect of java
without data races. In Proceedings of the 15th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, OOPSLA ’00, pages
382–400, New York, NY, USA, 2000. ACM.

[13] J.C.M. Baeten. A brief history of process algebra. Theoretical Computer Science,
335(2):131–146, 2005.

158

http://clojure.org/
https://golang.org/
http://groups.csail.mit.edu/tds/ioa/

[14] D.W. Barron, J.N. Buxton, D.F. Hartley, E. Nixon, and C. Strachey. The main features
of cpl. The Computer Journal, 6(2):134–143, 1963.

[15] J.A. Berstra and J.W. Klop. Fixed point semantics in process algebra. Technical
Report IW 208, Mathematical Centre, Amsterdam, 1982.

[16] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and Y. Zhou.
Cilk: An efficient multithreaded runtime system, volume 30. ACM, 1995.

[17] G. Booch. Object-oriented design. ACM SIGAda Ada Letters, 1(3):64–76, 1982.

[18] F.P. Brooks Jr. The mythical man-month (anniversary ed.). Addison-Wesley Longman
Publishing Co., Inc., 1995.

[19] Edwin C. Chan, John T. Boyland, and William L. Scherlis. Promises: Limited specifi-
cations for analysis and manipulation. In Proceedings of the 20th International Confer-
ence on Software Engineering, ICSE ’98, pages 167–176, Washington, DC, USA, 1998.
IEEE Computer Society.

[20] K.M. Chandy and J. Misra. Parallel program design. Reading, MA; Addison-Wesley
Pub. Co. Inc., 1989.

[21] A. Church. An unsolvable problem of elementary number theory. American journal of
mathematics, 58(2):345–363, 1936.

[22] W.D. Clinger. Foundations of actor semantics. PhD thesis, Massachusetts Institute of
Technology, 1981.

[23] EF Codd, ES Lowry, E. McDonough, and CA Scalzi. Multiprogramming stretch:
feasibility considerations. Communications of the ACM, 2(11):13–17, 1959.

[24] Melvin E. Conway. Design of a separable transition-diagram compiler. Commun. ACM,
6(7):396–408, July 1963.

[25] F.J. Corbató, M. Merwin-Daggett, and R.C. Daley. An experimental time-sharing
system. In Proceedings of the May 1-3, 1962, spring joint computer conference, pages
335–344. ACM, 1962.

[26] F.J. Corbató and V.A. Vyssotsky. Introduction and overview of the multics system.
In Proceedings of the November 30–December 1, 1965, fall joint computer conference,
part I, pages 185–196. ACM, 1965.

[27] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux device drivers. O’Reilly Media,
2005.

159

[28] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S. Lumetta,
T. Von Eicken, and K. Yelick. Parallel programming in split-c. In Supercomputing’93.
Proceedings, pages 262–273. IEEE, 1993.

[29] O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare. Structured programming. Academic Press
Ltd., 1972.

[30] M. Davis. Computability & Unsolvability. Dover Books on Computer Science Series.
Dover, 1958.

[31] D.C. DeRoure. Parallel implementation of unity. The PUMA and GENESIS Projects,
pages 67–75, 1991.

[32] E.W. Dijkstra. Cooperating sequential processes. Technical report, Technological
University, Eindhoven, The Netherlands, September 1965.

[33] J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures
persistent. Journal of computer and system sciences, 38(1):86–124, 1989.

[34] ECMA International. Standard ECMA-262 - ECMAScript Language Specification. 5.1
edition, June 2011.

[35] E. Emerson and E. Clarke. Characterizing correctness properties of parallel programs
using fixpoints. Automata, Languages and Programming, pages 169–181, 1980.

[36] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency
and predicate locks in a database system. Commun. ACM, 19(11):624–633, November
1976.

[37] Cormac Flanagan and Mart́ın Abadi. Object types against races. In Proceedings of the
10th International Conference on Concurrency Theory, CONCUR ’99, pages 288–303,
London, UK, UK, 1999. Springer-Verlag.

[38] The Apache Software Foundation. http://www.apache.org.

[39] The Apache Software Foundation. http://tomcat.apache.org.

[40] D.P. Friedman and D.S. Wise. The Impact of Applicative Programming on Multipro-
cessing. Technical report (Indiana University, Bloomington. Computer Science Dept.).
Indiana University, Computer Science Department, 1976.

[41] A. Ganapathi, V. Ganapathi, and D. Patterson. Windows xp kernel crash analysis.
20th LISA, pages 101–111, 2006.

[42] S.J. Garland, N.A. Lynch, J. Tauber, and M. Vaziri. IOA user guide and reference
manual. Computer Science and Artificial Intelligence Labatory, 2003.

160

http://www.apache.org
http://tomcat.apache.org

[43] C. Georgiou, N. Lynch, P. Mavrommatis, and J.A. Tauber. Automated implementation
of complex distributed algorithms specified in the ioa language. International Journal
on Software Tools for Technology Transfer (STTT), 11(2):153–171, 2009.

[44] K.J. Goldman. Distributed algorithm simulation using input/output automata. Tech-
nical report, DTIC Document, 1990.

[45] K. Gopinath and J.L. Hennessy. Copy elimination in functional languages. In Proceed-
ings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 303–314. ACM, 1989.

[46] A. Granicz, D. Zimmerman, and J. Hickey. Rewriting UNITY. In Eobert Nieuwenhuis,
editor, Proceedings of the 4th International Conference on Rewriting Techniques and
Applications (RTA 14), volume 2706 of Lecture Notes in Computer Science. Springer,
June 2003.

[47] Dan Grossman. Type-safe multithreading in cyclone. In Proceedings of the 2003 ACM
SIGPLAN International Workshop on Types in Languages Design and Implementation,
TLDI ’03, pages 13–25, New York, NY, USA, 2003. ACM.

[48] S. Halloway. Programming Clojure. Pragmatic Bookshelf, 2009.

[49] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for
lock-free data structures. In Proceedings of the 20th annual international symposium
on computer architecture, ISCA ’93, pages 289–300, New York, NY, USA, 1993. ACM.

[50] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for artifi-
cial intelligence. In Proceedings of the 3rd international joint conference on Artificial
intelligence, pages 235–245. Morgan Kaufmann Publishers Inc., 1973.

[51] M. Hind. Pointer analysis: haven’t we solved this problem yet? In Proceedings of the
2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, pages 54–61. ACM, 2001.

[52] C.A.R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666–677, 1978.

[53] John Hogg. Islands: Aliasing protection in object-oriented languages. In Conference
Proceedings on Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’91, pages 271–285, New York, NY, USA, 1991. ACM.

[54] M. Huber. Maspar unity version 1.0. ftp://sanfrancisco.ira.uka.de/pub/maspar/
maspar_unity.tar.Z, 1992.

[55] C. B. Jones. Tentative steps toward a development method for interfering programs.
ACM Trans. Program. Lang. Syst., 5(4):596–619, October 1983.

161

ftp://sanfrancisco.ira.uka.de/pub/maspar/maspar_unity.tar.Z
ftp://sanfrancisco.ira.uka.de/pub/maspar/maspar_unity.tar.Z

[56] G. Kahn. The semantics of a simple language for parallel programming. proceedings
of IFIP Congress74, 74:471–475, 1974.

[57] Tom Knight. An architecture for mostly functional languages. In Proceedings of the
1986 ACM conference on LISP and functional programming, LFP ’86, pages 105–112,
New York, NY, USA, 1986. ACM.

[58] Shriram Krishnamurthi and Jan Vitek. The real software crisis: Repeatability as a
core value. Commun. ACM, 58(3):34–36, February 2015.

[59] William Landi. Undecidability of static analysis. ACM Lett. Program. Lang. Syst.,
1(4):323–337, December 1992.

[60] J.R. Larus and P.N. Hilfinger. Detecting conflicts between structure accesses. In ACM
SIGPLAN Notices, volume 23, pages 24–31. ACM, 1988.

[61] D. Lea. Concurrent programming in Java: design principles and patterns. Prentice
Hall, 2000.

[62] E.A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[63] E.A. Lee. Heterogeneous actor modeling. In Proceedings of the ninth ACM interna-
tional conference on Embedded software, pages 3–12. ACM, 2011.

[64] N.A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[65] Z. Manna and A. Pnueli. How to cook a temporal proof system for your pet lan-
guage. In Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pages 141–154. ACM, 1983.

[66] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems: Spec-
ification, volume 1. Springer, 1992.

[67] Jules Mersel. Program interrupt on the univac scientific computer. In Papers presented
at the February 7-9, 1956, joint ACM-AIEE-IRE western computer conference, AIEE-
IRE ’56 (Western), pages 52–53, New York, NY, USA, 1956. ACM.

[68] R. Milner. A calculus of communicating systems. Springer-Verlag New York, Inc.,
1982.

[69] R. Milner. Communicating and mobile systems: the π-calculus. Cambridge Univ Pr,
1999.

[70] B. Murphy. Automating software failure reporting. Queue, 2(8):42–48, 2004.

[71] C. Okasaki. Purely functional data structures. Cambridge Univ Pr, 1999.

162

[72] IFIP Working Group 2.1 on Algol, S.A. Schuman, and Institut de recherche
d’informatique et d’automatique. New Directions in Algorithmic Languages. Insti-
tut de recherche d’informatique et d’automatique., 1975.

[73] J. Ousterhout. Why threads are a bad idea (for most purposes). In Presentation given
at the 1996 Usenix Annual Technical Conference, 1996.

[74] Young Gil Park and Benjamin Goldberg. Escape analysis on lists. In Proceedings of
the ACM SIGPLAN 1992 Conference on Programming Language Design and Imple-
mentation, PLDI ’92, pages 116–127, New York, NY, USA, 1992. ACM.

[75] D.L. Parnas. On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM, 15(12):1053–1058, 1972.

[76] R.L. Patrick. General motors/north american monitor for the ibm 704 computer. 1987.

[77] A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer
Science, 13(1):45–60, 1981.

[78] J. Queille and J. Sifakis. Specification and verification of concurrent systems in cesar.
In International Symposium on Programming, pages 337–351. Springer, 1982.

[79] S. Radha and C.R. Muthukrishnan. A portable implementation of unity on von neu-
mann machines. Computer Languages, 18(1):17–30, 1993.

[80] G. Ramalingam. The undecidability of aliasing. ACM Trans. Program. Lang. Syst.,
16(5):1467–1471, September 1994.

[81] James Reinders. Transactional synchronization in haswell. http://software.intel.
com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell,
February 2012.

[82] H. G. Rice. Classes of recursively enumerable sets and their decision problems. Trans.
Amer. Math. Soc., 74:358–366, 1953.

[83] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: Taming device drivers. In
Proceedings of the 4th ACM European conference on Computer systems, pages 275–
288. ACM, 2009.

[84] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-oriented software ar-
chitecture: Patterns for concurrent and networked objects, volume 2. Wiley, 2000.

[85] N. Shavit and D. Touitou. Software transactional memory. Distributed Computing,
10(2):99–116, 1997.

163

http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell

[86] A. Silberschatz, P.B. Galvin, and G Gagne. Operating system concepts, volume 7.
Addison-Wesley, 2005.

[87] A. Silberschatz, P.B. Galvin, G. Gagne, and A. Silberschatz. Operating system con-
cepts, volume 4. Addison-Wesley, 1998.

[88] Lambert M. Surhone, Mariam T. Tennoe, and Susan F. Henssonow. Node.Js. Be-
tascript Publishing, Mauritius, 2010.

[89] H. Sutter and J. Larus. Software and the concurrency revolution. Queue, 3(7):54–62,
2005.

[90] Robert Endre Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Infor-
matica, 6(2):171–185, 1976.

[91] J.A. Tauber. Verifiable compilation of i/o automata without global synchronization.
PhD thesis, Massachusetts Institute of Technology, 2004.

[92] J.A. Tauber, N.A. Lynch, and M.J. Tsai. Compiling ioa without global synchronization.
In Network Computing and Applications, 2004.(NCA 2004). Proceedings. Third IEEE
International Symposium on, pages 121–130. IEEE, 2004.

[93] M.J. Tsai. Code generation for the ioa language. Master’s thesis, Massachusetts
Institute of Technology, 2002.

[94] A. Turing. On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London Mathematical Society, 2(42):230–265, 1936.

[95] A. M. Turing. On computable numbers, with an application to the entscheidungsprob-
lem. Proceedings of the London Mathematical Society, s2-42(1):230–265, 1937.

[96] P. Wadler. Comprehending monads. In Proceedings of the 1990 ACM conference on
LISP and functional programming, pages 61–78. ACM, 1990.

[97] W. Walker and H.G. Cragon. Interrupt processing in concurrent processors. Computer,
28(6):36–46, 1995.

[98] M.V.W.D.J. Wheeler and S. Gill. The preparation of programs for an electronic digital
computer, 1951.

[99] Anthony Williams. C++ concurrency in action practical multithreading. Manning,
Shelter Island, NY, 2012.

[100] N. Wirth. Program development by stepwise refinement. Communications of the ACM,
14(4):221–227, 1971.

164

Vita

Justin Wilson

Degrees B.S. Summa Cum Laude, Electrical Engineering, December 2006

B.S. Summa Cum Laude, Computer Engineering, December 2006

Ph.D. Computer Science, December 2016

Publications Wilson, J., Dai, M., Jakupovic, E., Watson, S., & Meng, F. (2007).

Supercomputing with toys: harnessing the power of NVIDIA 8800GTX

and playstation 3 for bioinformatics problems. In Computational Sys-

tems Bioinformatics Conference (Vol. 6, pp. 387-390).

Thomas, L., Wilson, J., Roman, G. C., & Gill, C. (2009, November).

Achieving coordination through dynamic construction of open work-

flows. In ACM/IFIP/USENIX International Conference on Dis-

tributed Systems Platforms and Open Distributed Processing (pp.

268-287). Springer Berlin Heidelberg.

Xi, S., Wilson, J., Lu, C., & Gill, C. (2011, October). RT-Xen: to-

wards real-time hypervisor scheduling in xen. In IEEE International

Conference on Embedded Software (EMSOFT) (pp. 39-48).

December 2016

165

	List of Tables
	List of Figures
	Acknowledgments
	Abstract
	Introduction
	Reactive Programs and Systems
	Trends
	Limitations of the State of the Art
	Challenges
	Approach and Contributions

	Background and Related Work
	Reactive Component Model
	Features of the Model
	State Variables
	Atomic State Transitions
	Actions, Reactions, Push Ports, Bindings, and Composition
	Transactions
	Execution

	Example: Clock System
	Properties of Composition
	Substitutional Equivalence
	Determinism and Composition
	Decomposition, Getters, and Pull Ports

	Summary

	The rcgo Programming Language
	Challenges
	Constraints
	Approach
	Preliminaries
	Syntax and Semantics
	Examples
	Shared Variable System
	Heap Channel System

	Related Work
	Summary

	Implementation
	Interpreter Organization and Implementation
	Enforcing Sound Composition
	Activations
	Heaps
	I/O
	Summary

	Transaction Scheduling
	The Transaction Scheduling Problem
	Scheduler Design Criteria
	Scheduler Design
	Scheduler Implementations
	Scheduler Evaluation
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work
	Dynamic Systems
	Scheduling

	Broader Impacts

	to Appendix A Partition Tables
	References
	Vita

